Skip to main content

Advertisement

Log in

Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause of disc failure?

  • Original Articles
  • Published:
European Spine Journal Aims and scope Submit manuscript

Résumé

Le but de cette recherche a été de confirmer l'hypothèse selon laquelle l'altération d'un corps vertébral peut créer une concentration anormale des contraintes dans les disques intervertébraux adjacents. 23 segments mobiles cadavériques prélevés sur des sujets de 19 à 87 ans, ont été soumis à une charge importante, en position dite neutre, en extension et en flexion. Pendant la phase de mise en charge, un capteur de pression miniaturisé, placé dans de disque, le long de son diamètre sagittal médian, a permis d'obtenir les courbes des contraintes de compression horizontale et verticale; les mesures ont été répétées après que chaque segment mobile a été comprimé jusqu'au point de rupture mécanique: les corps vertébraux ont présenté alors des altérations mineures au niveau des travées spongieuses et parfois des plateaux, mais leur structure est restée intacte et la hauteur du segment mobile ne s'est réduite que de 1 à 2%. Après le traumatisme, les contraintes ont chuté d'environ 30% dans le nucléus et la partie antérieure de l'annulus, et des pics de contrainte élevés sont apparus dans les couches profondes de la partie postérieure de l'annulus. Ces modifications ont été plus importantes en extension et moins prononcées en flexion. Les disques les plus jeunes ont présenté les modifications les plus discrètes. En conclusion, les tassements mineurs du corps vertébral peuvent conduire à des concentrations de contraintes très élevées dans la partie postérieure de l'annulus. Le corps vertébral étant le point faible du rachis lombaire, son altération peut être considérée comme une cause fréquente de faillite discale.

Summary

The purpose of this investigation was to test the hypothesis that damage to a lumbar vertebral body can lead to abnormal stress concentrations in the adjacent intervertebral discs. Twenty-three cadaveric lumbar “motion segments”, from persons who had died aged between 19 and 87 years, were subjected to substantial compressive loading while in the neutral, lordotic and flexed “postures”. During the loading period, a miniature pressure transducer was pulled through the disc along its mid-sagittal diameter and graphs of horizontal and vertical compressive stress against distance were obtained. Measurements were repeated after each motion segment had been compressed up to the point of mechanical failure: at this point the vertebral bodies suffered minor damage to the trabecular arcades, and sometimes to the end-plate, but the structure remained essentially intact and motion segment height was reduced by only 1%–2%. After damage, the stress in the nucleus and anterior annulus fell by about 30%, and high stress peaks appeared in the inner posterior annulus. These changes were more pronounced in lordotic posture and less pronounced in flexion. The youngest discs showed the smallest changes. It is concluded that minor compressive damage to the vertebral body can lead to high stress concentrations in the posterior annulus. Since the vertebral body is the “weak link” of the lumbar spine, this may be a frequent precipitating cause of isolated disc failure in living people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adams MA, Dolan P (1991) A technique for quantifying bending moment acting on the lumbar spine invivo (European Society of Biomechanics Award Paper) J Biomech 24:117–126

    Google Scholar 

  2. Adams MA, Hutton WC (1980) The effect of posture on the role of the apophyseal joints in resisting intervertebral compressive force. J Bone Joint Surg 62-B:358–362

    Google Scholar 

  3. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury. Spine 7:184–191

    Google Scholar 

  4. Adams MA, Hutton WC (1983) The effect of fatigue on the lumbar intervertebral disc. J Bone Joint Surg 65-B:199–203

    Google Scholar 

  5. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531

    Google Scholar 

  6. Adams MA, Dolan P, Hutton WC (1988) The lumbar spine in backward bending. Spine 13:1019–1026

    Google Scholar 

  7. Adams MA, McNally DS, Chinn H, Dolan P. Posture and the compressive strength of the lumbar spine (submitted)

  8. Bogduk N Twomey LT (1991) Clinical anatomy of the lumbar spine, chapter 14. Churchill Livingstone, Edinburgh

    Google Scholar 

  9. Brinckmann P, Grootenboer H (1991) Change of disc height, radial disc bulge and intra-discal pressure from discectomy: an in-vitro investigation on human lumbar discs. Spine 16:641–646

    Google Scholar 

  10. Brinkmann P, Horst M (1985) The influence of vertebral body fracture, intra-discal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 10:138–145

    Google Scholar 

  11. Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech (Suppl)

  12. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech 4 (Suppl 2)

  13. Crock HV (1986) Internal disc disruption. A challenge to disc prolapse fifty years on. Spine 11:650–653

    Google Scholar 

  14. Dolan P, Adams MA, Hutton WC (1988) Commonly adopted postures and their effect on the lumbar spine. Spine 13:197–201

    Google Scholar 

  15. Dunlop RB, Adams MA, Hutton WC (1984) Disc space narrowing and the lumbar facet joints. J Bone Joint Surg 66-B: 706–710

    Google Scholar 

  16. Farfan HF (1973) Mechanical disorders of the lower back. Lea & Febiger, Philadelphia

    Google Scholar 

  17. Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand (Suppl 100)

  18. Gordon SJ, Yang KH, Mayer PJ, Mace AH, Kish VL, Radin EL (1991) Mechanism of disc rupture — a preliminary report. Spine 16:450–456

    Google Scholar 

  19. Granhed H, Jonson R, Hansson T (1989) Mineral content and strength of lumbar vertebrae: a cadaver study. Acta Orthop Scand 60:105–109

    Google Scholar 

  20. Hansson T, Roos B (1983) The amount of bone mineral and Schmorl's nodes in lumbar vertebrae. Spine 8:266–271

    Google Scholar 

  21. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Google Scholar 

  22. Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl's nodes) in the dorsolumbar spine. Ann Rheum Dis 35:127–132

    Google Scholar 

  23. Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine 7:309–313

    Google Scholar 

  24. Lipson SJ, Muir H (1981) Proteoglycans in experimental intervertebral disc degeneration. Spine 6:194–210

    Google Scholar 

  25. Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine 8:857–865

    Google Scholar 

  26. Markolf KL, Morris JM (1974) The structural components of the intervertebral disc. J Bone Joint Surg 56-A:675–687

    Google Scholar 

  27. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17:66–73

    Google Scholar 

  28. Nachemson AL (1981) Disc pressure measurements. Spine 6:93–97

    Google Scholar 

  29. Nachemson A, Lewin T, Maroudas A, Freeman MAR (1970) In-vitro diffusion of dye through the end-plates and the annulus fibrosus of human intervertebral discs. Acta Orthop Scand 41:589–607

    Google Scholar 

  30. Osti OL, Vernon-Roberts B, Fraser RD (1990) Annulus tears and intervertebral disc degeneration: an experimental study using an animal model. Spine 15:762–767

    Google Scholar 

  31. Perey O (1957) Fracture of the vertebral endplate. A biomechanical investigation. Acta Orthop Scand (Suppl 25)

  32. Ritchie JH, Fahrni WH (1970) Age changes in lumbar intervertebral discs. Can J Surg 13:65–71

    Google Scholar 

  33. Seroussi RE, Krag MH, Muller DL, Pope MH (1989) Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion and extension loads. J Orthop Res 7:122–131

    Google Scholar 

  34. Shirazi-Adl A (1989) Strain in fibers of a lumbar disc. Analysis of the role of lifting in producing disc prolapse. Clin Biomech 14:96–103

    Google Scholar 

  35. Swärd L, Hellström M, Jacobsson BO, Peterson L (1990) Back pain and radiologic changes in the thoraco-lumbar spine of athletes. Spine 15:124–129

    Google Scholar 

  36. Swärd L, Hellström M, Jacobsson B, Nyman R, Peterson L (1991) Disc degeneration and associated abnormalities of the spine in elite gymnasts. An MRI study. Spine 16:437–443

    Google Scholar 

  37. Vernon-Roberts B (1988) Disc pathology and disease states. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton

    Google Scholar 

  38. Vernon-Roberts B, Pirie CJ (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis 32:406–412

    Google Scholar 

  39. Yang KH, King AI (1984) Mechanism of facet load transmission as a hypothesis for low back pain. Spine 9:557–565

    Google Scholar 

  40. Yasuma T, Makino E, Saito S, Inui M (1986) Histological development of intervertebral disc herniation. J Bone Joint Surg 68-A:1066–1072

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

AcroMed Prize of the European Spine Society 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.A., McNally, D.S., Wagstaff, J. et al. Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause of disc failure?. Eur Spine J 1, 214–221 (1993). https://doi.org/10.1007/BF00298362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298362

Mots-clés

Key words

Navigation