Advertisement

European Spine Journal

, Volume 1, Issue 4, pp 205–213 | Cite as

Intervertebral disc degeneration

  • R. D. Fraser
  • O. L. Osti
  • B. Vernon-Roberts
Review

Summary

Disc degeneration in the human spine is a complex phenomenon characterised by biochemical change in the nucleus pulposus and inner annulus and the formation of clefts and fissures radiating from the central area of the disc towards the periphery. In addition, and probably independent of these phenomena, discrete defects in the outer annular attachement are seen which are likely to be due to mechanical stress and failure. The presence of stress tears in disc tissue and their failure to heal can initiate or accelerate the degeneration of the central component of the intervertebral disc. We postulate that discogenic pain may be linked to damage to the outer portion of the annulus fibrosus. Although it would seem logical to assume that discs with sustained high intradiscal pressure would be more prone to pain referred in the outer annular layers because of higher tensile strain, analysis of prospective studies has failed to confirm a relationship between typical pain reproduction at discography and high pressure values. It is concluded that, at present, the only consistent morphological changes present in patients with pain reproduction at discography are the presence of various annular defects involving the outer layers. Whether nerve ingrowth during attempts at repair of these defects is a consistent feature remains to be established.

Key words

Disc degeneration Intervertebral disc Lumbar spondylosis Magnetic resonance imaging Discography 

Résumé

La dégénérescence des disques du rachis humain est un phénomène complexe caractérisé par des modifications biochimiques affectant le nucléus pulposus et les couches profondes de l'annulus et l'apparition de fissures et de fentes irradiant de la zone centrale du disque vers sa périphéric. De plus, et sans doute indépendamment de ces phénomènes, apparaissent au niveau des couches superficielles de l'annulus, de petites désinsertions qui sont probablement des ruptures provoquées par les contraintes mécaniques. La présence de déchirures discales liées aux contraintes et dépourvues de tendance spontanée à la guérison, peut initier ou accélérer la dégénérescence de la zone centrale du disque. Nous postulons que la douleur d'origine discale peut être liée aux altérations présentées par la partie périphérique de l'annulus. Bien qu'il puisse sembler logique d'admettre que les disques présentant une hyperpression intradiscale prolongée puissent davantage être enclins à engendrer des douleurs reportées dans les couches superficielles de l'annulus, en raison d'une tension plus élevée, l'analyse des études prospectives n'a pas confirmé de relation entre la reproduction typique d'une douleur à la discographie et des valeurs élevées de pression intradiscale. On en conclut pour le moment, que les seules modifications morphologiques significatives apparaissant chez les patients présentat la reproduction d'une douleur typique à la discographie, sont des altérations diverses de l'annulus affectant ses couches superficielles. Il reste à établir s'il existe une certaine reproduction des fibres nerveuses pendant l'essai de réparation de ces défects.

Mots-clés

Dégénérescence discale Disque intervertébral Arthrose vertébrale lombaire IRM Discographic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams MA, Dolan P, Hutton WC (1986) The stages of disc degeneration as revealed by discograms. J Bone Joint Surg [Br] 68:36Google Scholar
  2. 2.
    Bogduk N, Windsor M, Inglis A (1988) The innervation of the intervertebral disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, p 143Google Scholar
  3. 3.
    Brodsky AE, Binder WF (1979) Lumbar discography. Spine 4:110–120Google Scholar
  4. 4.
    Cloward RB (1952) Anterior herniation of a ruptured lumbar intervertebral disk. AMA Arch Surg 64:457–463Google Scholar
  5. 5.
    Cole TC, Burkhardt D, Ghosh P, Ryan M, Taylor TKF (1985) Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res 3:277Google Scholar
  6. 6.
    Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: its microscopic anatomy and pathology. III. Pathological changes in the intervertebral disc. J Bone Joint Surg 27:460Google Scholar
  7. 7.
    Crock HV (1970) A reappraisal of intervertebral disc lesions. Med J Aust 1983–1989Google Scholar
  8. 8.
    Friberg S (1948) Anatomical studies on lumbar disc degeneration. Acta Orthop Scand 17:224–230Google Scholar
  9. 9.
    Friberg S, Hirsch C (1950) Anatomical and clinical studies on lumbar disc degeneration. Acta Orthop Scand 19:222–242Google Scholar
  10. 10.
    Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand Suppl 100:68–82Google Scholar
  11. 11.
    Gibson MJ, Buckley J, Mawhinney R, Mulholland RC, Worthington BS (1986) Magnetic resonance imaging and discography in the diagnosis of disc degeneration. J Bone Joint Surg [Br] 68:369Google Scholar
  12. 12.
    Hilton RC, Ball J (1984) Vertebral rim lesions in the dorsolumbar spine. Ann Rheum Dis 43:302–307Google Scholar
  13. 13.
    Hirsch C, Schajowicz F (1953) Studies on structural changes in the lumbar anulus fibrosus. Acta Orthop Scand 22:184–231Google Scholar
  14. 14.
    Key JA, Ford LT (1948) Experimental intervertebral disc lesions. J Bone Joint Surg [Am] 30:621Google Scholar
  15. 15.
    Kirkaldy-Willis WH (1983) The pathology and pathogenesis of low back pain. In: Kirkaldy-Willis WH (ed) Managing low back pain. Churchill-Livingstone, London, pp 23–43Google Scholar
  16. 16.
    Lipson S, Muir H (1981) Proteoglycans in experimental disc degeneration. Spine 6:194Google Scholar
  17. 17.
    Morgan FP, King T (1957) Primary instability of lumbar vertebrae as a common cause of low back pain. J Bone Joint Surg [Br] 39:6–22Google Scholar
  18. 18.
    Nachemson AL (1963) The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stresses in the annulus fibrosus. Acta Orthop Scand 33:183Google Scholar
  19. 19.
    Nachemson AL (1965) In vivo discometry in lumbar discs with irregular nucleograms. Acta Orthop Scand 36:418Google Scholar
  20. 20.
    Osti OL, Fraser RD (1992) MRI and discography of annular tears and intervertebral disc degeneration. A prospective clinical comparison. J Bone Joint Surg [Br] 74:431–435Google Scholar
  21. 21.
    Osti OL, Vernon-Roberts B, Fraser RD (1990) Annulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine 15:762Google Scholar
  22. 22.
    Osti OL, Vernon-Roberts B, Moore RJ, Fraser RD (1992) Annular tears and intervertebral disc degeneration. An autopsy study. J Bone Joint Surg [Br] 75:6Google Scholar
  23. 23.
    Park WM, McCall MB, O'Brien JP, Webb TK (1979) Fissuring of the posterior annulus fibrosus in the lumbar spine. Br J Radiol 52:382–387Google Scholar
  24. 24.
    Schmorl G, Junghanns H (1971) The human spine in health and disease, 2nd Am edn. Grune and Stratton, New YorkGoogle Scholar
  25. 25.
    Schneiderman G, Flannigan B, Kingston S, Thomas J, Dillin WH, Watkins RG (1987) Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine 12:276–281Google Scholar
  26. 26.
    Smith JW, Wolmsley R (1951) Experimental incision of the intervertebral disc. J Bone Joint Surg [Br] 33:612–625Google Scholar
  27. 27.
    Stilwell DL (1956) The nerve supply of the vertebral column and its associated structures in the monkey. Anat Rec 125:139Google Scholar
  28. 28.
    Vernon-Roberts B (1992) Age related and degenerative pathology of intervertebral discs and apophyseal joints. In: Jayson MIV (ed) The lumbar spine and back pain, 4th edn. Churchill Livingstone, EdinburghGoogle Scholar
  29. 29.
    Vernon-Roberts B, Pirie CJ (1977) Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol Rehab 16:13–21Google Scholar
  30. 30.
    Weidenbaum M, et al (1990) Correlation of MRI with water and proteoglycan content in the human intervertebral disc. Annual Meeting of the International Society for the Study of the Lumbar Spine. Boston, June 13–17Google Scholar
  31. 33.
    Yoshizawa H, O'Brien JP, Thomas-Smith W, Trumper M (1980) The neuropathology of intervertebral discs removed for low-back pain. J Pathol 132:95Google Scholar
  32. 34.
    Zuckermann J, et al (1988) Normal MRI with abnormal discography. Spine 13:1355Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • R. D. Fraser
    • 1
  • O. L. Osti
    • 1
  • B. Vernon-Roberts
    • 2
  1. 1.Spinal UnitRoyal Adelaide HospitalAdelaideAustralia
  2. 2.Division of Tissue PathologyInstitute of Medical and Veterinary ScienceAdelaideAustralia

Personalised recommendations