Skip to main content
Log in

Some evidence on pore sizes in poly(dimethylsiloxane) elastomers having unimodal, bimodal, or trimodal distributions of network chain lengths

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Unimodal, bimodal, and trimodal networks were prepared by end linking functionally-terminated chains of poly(dimethylsiloxane). The resulting materials were characterized using a “thermoporometric” technique in which freezing points or melting points are determined for solvent absorbed into the network stuctures. The extent to which the normal melting point is suppressed depends on how much the solvent is constrained within the network pores. Several well-defined melting points were observed for some of the multimodal networks, which is consistent with their unusual distributions of network chain lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Llorente, M. A., Andrady, A. L., and Mark, J. E., J. Polym. Sci., Polym. Phys. Ed., 19, 621 (1981).

    Google Scholar 

  2. Curro, J. G. and Mark, J. E., J. Chem. Phys., 80, 4521 (1984).

    Google Scholar 

  3. Sun, C.-C. and Mark, J. E., J. Polym. Sci., Polym. Phys. Ed., 25,2073 (1987).

    Google Scholar 

  4. Galiatsatos, V. and Mark, J. E., Macromolecules, 20, 2631 (1987).

    Google Scholar 

  5. Mark, J. E. and Erman, B., “Rubberlike Elasticity. A Molecular Primer”, Wiley-Interscience, New York, 1988.

    Google Scholar 

  6. Erman, B. and Mark, J. E., J. Chem. Phys., 89, 3314 (1988).0

    Google Scholar 

  7. Galiatsatos, V. and Mark, J. E. in “Advances in Silicon-Based Polymer Science”, ed. by J. M. Zeigler and F. W. G. Fearon, American Chemical Society, Washington, 1990.

    Google Scholar 

  8. Silva, L. K., Mark, J. E., and Boerio, F. J., Makromol. Chem., 192, 499 (1991).

    Google Scholar 

  9. Wang, S., Ph. D. Thesis in Chemistry, The University of Cincinnati, 1991.

  10. Xu, P., Ph. D. Thesis in Chemistry, The University of Cincinnati, 1991.

  11. Xu, P., and Mark, J. E., J. Polym. Sci., Polym. Phys. Ed., 29, 355 (1991).

    Google Scholar 

  12. Andrady, A. L., Llorente, M. A., and Mark, J. E., Polym. Bulletin, 26, 357 (1991).

    Google Scholar 

  13. Xu, P. and Mark, J. E., Polymer, 33, 1843 (1992).

    Google Scholar 

  14. Wang, S. and Mark, J. E., J. Polym. Sci., Polym. Phys. Ed., 30, 801 (1992).

    Google Scholar 

  15. Clarson, S. C., Mark, J. E., Sun, C.-C., and Dodgson, K., Eur. Polym. J., 28, 823 (1992).

    Google Scholar 

  16. Madkour, T., Ph.D. Thesis in Chemistry, The University of Cincinnati, 1993.

  17. Mark, J. E., submitted to J. Inorg. Organomet. Polym.

  18. Flory, P. J., “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York, 1953.

    Google Scholar 

  19. Treloar, L. R. G., “The Physics of Rubber Elasticity”, 3rd Ed., Clarendon Press, Oxford, 1975.

    Google Scholar 

  20. Goldstein, A. N., Esher, C. M., and Alivisatos, A. P., Science, 256, 1425 (1992), and pertinent references cited therein.

    Google Scholar 

  21. Jackson, C. L. and McKenna, G. B., J. Chem. Phys. 93, 9002 (1990).

    Google Scholar 

  22. Jackson, C. L. and McKenna, G. B., J. Non-Cryst. Solids, 131–133, 221 (1991).

    Google Scholar 

  23. Phalippou, J., Ayral, A., Woignier, T., and Quinson, J. F., Europhys. Lett., 14, 249 (1991).

    Google Scholar 

  24. Ehrburger-Dolle, F., Misono, S., and Lahaye, J., J. Colloid Interface Sci. 135, 468 (1990).

    Google Scholar 

  25. Ma, W.-J., Banavar, J. R., and Koplik, J., J. Chem. Phys., 97, 485 (1992).

    Google Scholar 

  26. Kuhn, W., Peterli, E., and Majer H., J. Polym. Sci., 16 539 (1955).

    Google Scholar 

  27. Kuhn, W. and Majer H., Angew. Chem., 68, 345 (1956).

    Google Scholar 

  28. Kuhn, W., Peterli, E., and Majer H., Rubber Chem. Technol. 33, 245 (1960).

    Google Scholar 

  29. Boonstra, B. B., Heckman, F. A., Taylor, G. L., J. Appl. Polym. Sci., 12, 223 (1968).

    Google Scholar 

  30. Quinson, J. F., Actual Chim., 8, 21 (1979).

    Google Scholar 

  31. Oikawa, H. and Murakami, K., Polymer, 25, 225 (1984).

    Google Scholar 

  32. Murakami, K., Polymer, 27, 1563 (1986).

    Google Scholar 

  33. Murase, N., Gonda, K., and Watanabe, T., J. Phys. Chem., 90, 5420 (1986).

    Google Scholar 

  34. Mayen, M., Eur. Polym. J., 22, 987 (1986).

    Google Scholar 

  35. Honiball, D., Huson, M. G., and McGill, W. J., J. Polym. Sci., Polym. Phys. Ed., 26, 2413 (1988).

    Google Scholar 

  36. Pouchelon, A., Soria, M., and Moll, L., Makromol. Chem. Macromol. Symp., 40, 147 (1990).

    Google Scholar 

  37. Arndt, K. F. and Zander, P., Colloid Polym. Sci., 268, 806 (1990), and pertinent references cited therein.

    Google Scholar 

  38. Jackson, C. L. and McKenna, G. B., Rubber Chem. Technol., 64, 760 (1991).

    Google Scholar 

  39. Grobler, J. H. A. and McGill, W. J., J. Polym. Sci., Polym. Phys. Ed., 31, 575 (1993).

    Google Scholar 

  40. Mark, J. E. and Sullivan, J. L., J. Chem. Phys., 66, 1006 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madkour, T., Mark, J.E. Some evidence on pore sizes in poly(dimethylsiloxane) elastomers having unimodal, bimodal, or trimodal distributions of network chain lengths. Polymer Bulletin 31, 615–621 (1993). https://doi.org/10.1007/BF00297900

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297900

Key words

Navigation