Skip to main content
Log in

Expression of human poly(ADP-ribose) polymerase in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-Ela N, Jacobson EL, Jacobson MK (1988) Labeling methods for the study of poly- and mono(ADP-ribose) metabolism in cultured cells. Anal Biochem 174:239–250

    Google Scholar 

  • Althaus FR, Richter C (1987) ADP-ribosylation of proteins: enzymology and biological significance. Molecular Biology, Biochemistry and Biophysics, vol 37. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 1–122

    Google Scholar 

  • Alvarez-Gonzalez R, Eichenberger R, Loetscher P, Althaus FR (1986a) A new highly selective physicochemical assay to measure NAD+ in intact cells. Anal Biochem 156:473–480

    Google Scholar 

  • Alvarez-Gonzalez R, Eichenberger R, Althaus FR (1986b) Poly(ADP-ribose) biosynthesis and suicidal NAD+ depletion following carcinogen exposure of mammalian cells. Biochem Biophys Res Commun 138:1051–1057

    Google Scholar 

  • Bradford MB (1976) A rapid ad sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-drug binding. Anal Biochem 72:248–252

    Google Scholar 

  • De Murcia G, Huletsky A, Poirier GG (1988) Review: modulation of chromatin structure by poly(ADP-ribosyl)ation. Biochem Cell Biol 66:626–635

    Google Scholar 

  • Ferro AM, Olivera BM (1987) Intracellular pyridine nucleotide degradation and turnover. In: Dolphin D, Avramovic O, Poulson R (eds) Pyridine nucleotide coenzymes. Part B: Chemical, biochemical, and medical aspects. John Wiley and Sons, New York, pp 25–71

    Google Scholar 

  • Ferro AM, Thompson LH, Olivera BM (1984) Poly(ADP-ribosylation) and DNA topoisomerase I in different cell lines. In: Hübscher U, Spadari S (eds) Proteins involved in DNA replication. Plenum Press, New York, pp 441–447

    Google Scholar 

  • Gradwohl G, Ménissier-deMurcia J, Molinete M, Simonin F, Koken M, Hoeijmakers JHJ, deMurcia G (1990) The second zincfinger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA 87:2990–2994

    Google Scholar 

  • Hoffman CS, Winston F (1987) A ten minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Google Scholar 

  • Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M (1990) The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation, other structures recognize intact DNA. J Biol Chem 265:21907–21913

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Johnstone M, Davies RW (1984) Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mot Cell Biol 4:1440–1448

    Google Scholar 

  • Jonsson GG, Menard L, Jacobson EL, Poirier GG, Jacobson MK (1988) Effect of hyperthermia on poly(adenosine diphosphateribose) glycohydrolase. Cancer Res 48:4240–4243

    Google Scholar 

  • Jonsson GG, Jacobson EL, Jacobson MK (1988b) Mechanism of alteration of poly(adenosine diphosphate-ribose) metabolism by hyperthermia. Cancer Res 48:4233–4239

    Google Scholar 

  • Jorgensen TJ, Olive PL, Durand RE (1987) DNA strand breaks in Chinese hamster V79 cells caused by low levels of incorporated [3H] and [14C] thymidine. Int J Radiat Biol 51:673–680

    Google Scholar 

  • Kaiser P, Auer B, Schweiger M (1992) Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NAD+ ADP-ribosyltransferase requires the DNA binding domain (“zinc fingers”). Mot Gen Genet 232:231–239

    Google Scholar 

  • Labarca C, Paigen K (1980) A simple, rapid and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Google Scholar 

  • Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Google Scholar 

  • Loeb LA (1969) Purification and properties of deoxyribonucleic acid polymerase of sea urchin embryos. J Biol Chem 244:1672–1681

    Google Scholar 

  • Loetscher P, Alvarez-Gonzalez R, Althaus FR (1987) Poly(ADPribose) may signal changing metabolic conditions to the chromatin of mammalian cells. Proc Natl Acad Sci USA 84:1286–1289

    Google Scholar 

  • Malanga M, Althaus FR (1994) The poly(ADP-ribose) molecules formed during DNA repair in vivo. J Biol Chem 269:17691–17696

    Google Scholar 

  • Ménissier-de Murcia J, Molinete M, Gradwohl G, Simonin F, deMurcia G (1989) Zinc-binding domain of poly(ADP-ribose) polymerase participates in the recognition of single strand breaks on DNA. J Mot Biol 210:229–233

    Google Scholar 

  • Naegeli H, Loetscher P, Althaus, FR (1989) Poly ADP-ribosylation of proteins: processivity of a post-translational modification. J Biol Chem 264:14382–14385

    Google Scholar 

  • Olempska-Beer Z, Freese EB (1984) Optimal extraction conditions for high performance liquid chromatographic determination of nucleotides in yeast. Anal Biochem 140:236–245

    Google Scholar 

  • Panzeter PL, Althaus FR (1990) High resolution size analysis of ADP-ribose polymers using modified DNA sequencing gels. Nucleic Acids Res 18:2194

    Google Scholar 

  • Panzeter PL, Realini CA, Althaus FR (1992) Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 31:1379–1385

    Google Scholar 

  • Park JK, Kim WJ, Park YS, Choi HS, Yu JE, Han DM, Park SD (1991) Inhibition of topoisomerase 1 by NAD and enhancement of cytotoxicity of MMS by inhibitors of poly(ADP-ribose) polymerase in Saccharomyces cerevisiae. Cell Mot Biol 37:739–744

    Google Scholar 

  • Petzold SJ, Booth BA, Leimbach GA, Berger NA (1981) Purification and properties of poly(ADP-ribose) polymerase from lamb thymus. Biochemistry 20:7075–7081

    Google Scholar 

  • Rickwood D, Osman MS (1978) Characterization of poly(ADP-ribose) polymerase activity in nuclei of the slime mould Dictyostelium discoideum. Mot. Cell Biochem 27:79–84

    Google Scholar 

  • Ruggieri S, Gregori L, Natalini P, Vita A, Magni G (1988) Recent observations on the structure and the properties of yeast NMN adenyltransferase. Experientia 44:27–29

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schneider JC, Guarente L (1991) Vectors for expression of cloned genes in yeast: regulation, overproduction, and underproduction. Methods Enzymol 194:373–388

    Google Scholar 

  • Thomassin H, Jacobson MK, Guay J, Verreault A, Aboul-Ela N, Menard L, Poirier GG (1990) An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase. Nucleic Acids Res 18:4691–4694

    Google Scholar 

  • Tramontano WA, Phillips DA, Carman A, Massaro AM (1990) Nuclear incorporation of [adenine-14C] by compounds which affect poly(ADP-ribose) formation. Phytochemistry 29:31–33

    Google Scholar 

  • Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:73–100

    Google Scholar 

  • Ueda K (1987) Nonredox reactions of pyridine nucleotides. In: Dolphin D, Avramovic O, Poulson R (eds) Pyridine nucleotide coenzymes. Part B: Chemical, biochemical, and medical aspects. John Wiley and Sons, New York, pp 549–597

    Google Scholar 

  • Werner E, Sohst S, Gropp F, Simon D, Wagner H, Kröger H (1984) Presence of poly(ADP-ribose) polymerase and poly(ADP-ribose)glycohydrolase in the dinoflagellate Crypthecodinium cohnii. Eur J Biochem 139:81–86

    Google Scholar 

  • Wielckens K, Bredehorst R, Hilz H (1981) Protein-bound polymeric and monomeric ADP-ribose residues in hepatic tissues. Eur J Biochem 117:69–74

    Google Scholar 

  • Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H (1982) DNA fragmentation and NAD depletion: their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADPribosyl) proteins. J Biol Chem 257:12872–12877

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collinge, M.A., Althaus, F.R. Expression of human poly(ADP-ribose) polymerase in Saccharomyces cerevisiae . Molec. Gen. Genet. 245, 686–693 (1994). https://doi.org/10.1007/BF00297275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297275

Key words

Navigation