Skip to main content
Log in

Mapping of the interleukin 5 receptor gene to human Chromosome 3 p25–p26 and to mouse Chromosome 6 close to the Raf-1 locus with polymorphic tandem repeat sequences

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Simple-sequence tandem repeat sequences in the 3′ UTR of interleukin 5 (IL5)-receptor gene of human and mouse are polymorphic in their length among humans and different strains of mice. In 20 different human Epstein-Barr virus (EBV)-transformed cell lines, six alleles of IL5R could be distinguished. In the mouse, three different alleles are found. With the human-specific IL5R tandem repeat marker in human-rodent somatic cell hybrids, the IL5R gene was mapped to human Chromosome (Chr) 3 p25–p26. With the mouse-specific IL5R tandem repeat sequence in recombinant inbred strains of mice, the Il5r gene was mapped to the distal part of mouse Chr 6 close to the Raf-1 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonner, T., O'Brien, S.J., Nash, W.G., Rapp, V.R., Morton, C.C., Lede, P. (1984). Two human homologs of the raf (mil) oncogene are located on human chromosome 3 and 4. Science 223, 71–74.

    Google Scholar 

  • Brauch, H., Johnson, B., Hovis, J., Uano, T., Gazdar, A., Pettengill, O.S., Graziano, S., Sorenson, G.D., Poiesz, B.J., Minna, J., Lonchan, M., Zbar, B. (1987). Molecular analysis of the short arm of chromosome 3 in small-cell and non-small cell carcinoma of the lung. N. Engl. J. Med. 317, 1109–1113.

    Google Scholar 

  • Coffman, R.L., Seymour, B.W.P., Hudak, S., Jackson, J., Rennick, D. (1989). Antibody to interleukin-5 inhibits helminth induced eosinophilia in mice. Science 245, 308–310.

    Google Scholar 

  • D'Eustachio, P., Brown, M., Watson, C., Paul, W.E. (1988). The IL-4 gene maps to chromosome 11, near the gene encoding IL-3. J. Immunol. 141, 3067–3071.

    Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S.E., Shin, H.-S., Friedman, J., Dracopoli, N., Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.

    Google Scholar 

  • Drabkin, H., Bradley, C., Hart, I., Bleskan, J., Li, F.P., Peterson, D. (1985). Translocation of c-myc in the hereditary renal cell carcinoma associated with a T(3;8)-(p14.2;q24.13) chromosomal translocation. Proc. Natl. Acad. Sci. USA 82, 6980–6984.

    Google Scholar 

  • Drabkin, H., Wright, M., Jonsen, M., Varkony, T., Jones, C., Sage, M., Gold, S., Morse, H., Mandez, M., Erikson, P. (1990). Development of a somatic cell hybrid mapping panel and molecular probes for human chromosome 3. Genomics 8, 435–446.

    Google Scholar 

  • Elliott, R.W., Sparkes, R.S., Mohandas, T., Grant, S.G., McGinnis, J.F. (1990). Localization of the rhodopsin gene to the distal half of mouse chromosome 6. Genomics 6, 635–644.

    Google Scholar 

  • Hirai, K., Yamaguchi, M., Misaki, Y., Takaishi, T., Ohta, K., Morita, Y., Ito, K., Miyamoto, T. (1990). Enhancement of human basophil histamin release by IL5. J. Exp. Med. 172, 1525–1528.

    Google Scholar 

  • Levan, G., Szpirer, J., Szpirer, C., Klinga, K., Hanson, C., Islam, M.Q. (1991). The gene map of the Norway Rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10, 699–718.

    Google Scholar 

  • Limaye, A.P., Abrams, J.S., Silver, J.E., Ottesen, E.A., Nutman, T.B. (1990). Regulation of parasite-induced eosinophilia: selectively increased interleukin 5 production in helminth-infected patients. J. Exp. Med. 172, 399–402.

    Google Scholar 

  • Milatovich, A., Song, K., Heller, R.A., Francke, U. (1991). Tumor necrosis factor receptor genes, TNFR1 and TNFR2, on human chromosome 12 and 1. Somatic Cell Mol. Genet. 17, 519–523.

    Google Scholar 

  • Mita, S.A., Tominaga, A., Hitoshi, Y., Sakamoto, S., Honjo, T., Akagi, M., Kikuchi, Y., Yamaguchi, N., Takatsu, K. (1989). Characterization of high-affinity receptors for interleukin 5 on interleukin 5-dependent cell lines. Proc. Natl. Acad. Sci. USA 86, 2311–2315.

    Google Scholar 

  • Mock, B.A., Krall, M., Kozak, C.A., Nesbitt, M.N., McBride, O.W., Renould, J-C., Van Snick, J. (1990) IL-9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics 31, 265–269.

    Google Scholar 

  • Murata, Y., Takaki, S., Migita, M., Kikuchi, Y., Tominaga, A., Takatsu, K. (1992). Molecular cloning and expression of the human interleukin 5 receptor. J. Exp. Med. 175, 341–351.

    Google Scholar 

  • Owen, W.F., Rothenberg, M.E., Peterson, J., Weller, P.F., Silberstein, D., Sheffer, A.L., Stevens, R.L., Austin, K.F. (1989). Interleukin 5 and phenotypically altered eosinophils in the blood of patients with ideopathic hypereosinophilic syndrome. J. Exp. Med. 170, 343–348.

    Google Scholar 

  • Owen, W.F., Peterson, J., Sheff, D.M., Folkerth, R.D., Anderson, R.J., Austin, K.F. (1990). Hypodense eosinophils and interleukin 5 activity in blood of patients with the eosinophilia-myalgia syndrome. Proc. Natl. Acad. Sci. USA 87, 8647–8651.

    Google Scholar 

  • Saito, H., Hatake, K., Dvorak, A.M., Leiferman, K.M., Donnenberg, A.D., Arai, N., Ishizaka, K., Ishizaka, T. (1988). Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc. Natl. Acad. Sci. USA 85, 2288–2292.

    Google Scholar 

  • Sanderson, C.J., Campbell, H.D., Young, I.G. (1988). Molecular and cellular biology of eosinophil differentiation factor (IL5) and its effects on human and mouse B cells. Immunol. Rev. 102, 29–50.

    Google Scholar 

  • Sparker, R.S., Klisak, I., Kaufman, D., Mohandas, T., Tobin, A.J., McGinnis, J.F. (1986). Assignment of the rhodopsin gene to human chromosome three, region 3p21–3p24 by in situ hybridization studies. Curr. Eye Res. 5, 797–798.

    Google Scholar 

  • Takahashi, M., Yoshida, M.C., Satoh, H., Hilgers, J., Yaoita, Y., Honjo, T. (1989). Chromosomal mapping of the mouse Il-4 and human Il-5 genes. Genomics 4, 47–52.

    Google Scholar 

  • Takaki, S., Tominaga, A., Hitoshi, Y., Mita, S., Sonoda, E., Yamaguchi, N., Takatusu, K. (1990). Molecular cloning and expression of the murine interleukin-5 receptor. EMBO J. 9, 4367–4374.

    Google Scholar 

  • Takaki, S., Mita, S., Kitamura, T., Yonehara, S., Yamaguchi, N., Tominaga, A., Miyajima, A., Takatsu, K. (1991). Identification of the second subunit of the murine interleukin 5 receptor: interleukin 3-receptor like protein, AIC2B, is a component of the high affinity iL5 receptor. EMBO J. 10, 2833–2838.

    Google Scholar 

  • Takao, S., Mykytyn, K., Jacob, C.O. (1992). Novel DNA polymorphism in the mouse TNF receptors I and II. Immunogenetics 37, 199–203.

    Google Scholar 

  • Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., Plactnick, G. (1991). A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific α chain and a β chain shared with the receptor for GM-CSF. Cell 66, 1175–1184.

    Google Scholar 

  • Van Leeuwen, B.H., Martinson, M.E., Webb, G.C., Young, I.G. (1989). Molecular organization of the cytokine gene cluster, involving the human IL3, IL4, IL5 and GM-CSF genes, on human chromosome 5. Blood 73, 1142–1148.

    Google Scholar 

  • Wilson, S.D., Billings, P.R., D'Eustachio, P., Fournier, R.E.K., Geissler, E., Lalley, P.A., Burd, P.R., Housman, D.E., Taylor, B.A., Dorf, M.E. (1990). Clustering of cytokine genes on mouse chromosome 11. J. Exp. Med. 171, 1301–1314.

    Google Scholar 

  • Yamaguchi, Y., Suda, T., Suda, J., Eguchi, M., Miura, Y., Harada, N., Tominaga, A., Takatsu, K. (1988). Purified Il-5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J. Exp. Med. 167, 43–53.

    Google Scholar 

  • Yang, Y.-C., Koracis, S., Kriz, R., Wolf, S., Clark, S.C., Wellems, T.E., Nienhuis, A., Epstein, N. (1988). The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71, 958–964.

    Google Scholar 

  • Yokota, T., Coffman, R.L., Hagiwara, H., Rennick, D.M., Arai, K. (1987). Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA enhancing factor and eosinophil colony stimulating factor activities: relationship to IL5. Proc. Natl. Acad. Sci. USA 84, 7388–7392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, C.O., Mykytyn, K., Varcony, T. et al. Mapping of the interleukin 5 receptor gene to human Chromosome 3 p25–p26 and to mouse Chromosome 6 close to the Raf-1 locus with polymorphic tandem repeat sequences. Mammalian Genome 4, 435–439 (1993). https://doi.org/10.1007/BF00296817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296817

Keywords

Navigation