Skip to main content

Advertisement

Log in

Calcium involvement in free radical effects

  • Editorial
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kacew S, Reasor MJ (eds) (1984) Toxicology and the newborn. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  2. Stern A (1989) Drug-induced oxidative denaturation in red blood cells. Semin Hematol 26:301–306

    Google Scholar 

  3. Saltman P (1989) Oxidative stress: a radical view. Semin Hematol 26:249–256

    Google Scholar 

  4. Biemond P, Swaak AJG, van Eijk HG, Koster JF (1988) Superoxide-dependent iron release from ferritin in inflammatory diseases. Free Rad Biol Med 4:185–198

    Google Scholar 

  5. Halliwell B, Gutteridge JMC (1986) Oxygen-free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514

    Google Scholar 

  6. Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    Google Scholar 

  7. Canada AT, Calabrese EJ (1989) Superoxide dismutase: its role in xenobiotic detoxification. Pharmac Ther 44:285–295

    Google Scholar 

  8. Hong Y, Li CH, Burgess JR, Chang M, Salem A, Srikumar K, Reddy CC (1989) The role of selenium-dependent and seleniumindependent glutathione peroxidases in the formation of prostaglandin F2*. J Biol Chem 264:13793–13800

    Google Scholar 

  9. German JB, Hu ML (1990) Oxidant stress inhibits the endogenous production of lipoxygenase metabolites in rat lungs and fish gills. Free Rad Biol Med 8:441–448

    Google Scholar 

  10. Babior BM (1984) Oxidants from phagocytes: agents of defense and destruction. Blood 64:959–966

    Google Scholar 

  11. Malech HL, Gallin JI (1987) Neutrophils in human diseases. N Engl J Med 317:687–694

    Google Scholar 

  12. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Google Scholar 

  13. McCord JM, Fridovich I (1968) The reduction of cytochrome by milk xanthine oxidase. J Biol Chem 243:560–573

    Google Scholar 

  14. Fridovich I (1970) Quantitative aspects of the production of superoxide anion radical milk xanthine oxidase. J Biol Chem 245:4053–4057

    Google Scholar 

  15. Saugstad OD (1988) Hypoxanthine as an indicator of hypoxia: its role in health and disease through free radical production. Pediatr Res 23:143–150

    Google Scholar 

  16. Goldberg B, Stern A, Peisach J (1976) The mechanism of superoxide anion generation by its interaction of phenylhydrazine with hemoglobin. J Biol Chem 251:3045–3051

    Google Scholar 

  17. Goldstein BD, McDonagh EM (1976) Spectrofluorescent detection of in vivo red cell lipid peroxidation in patients treated with diaminodiphenylsulfone. J Clin Invest 57:1302–1307

    Google Scholar 

  18. Van Der Zee J, Van Steveninck J, Koster JF, Dubbelman TMAR (1989) Inhibition of enzymes and oxidative damage of red blood cells induced by t-butylhydroperoxide-derived radicals. Biochim Biophys Acta 980:175–180

    Google Scholar 

  19. Arduini A, Stern A (1985) Spectrin degradation in intact red blood cells by phenylhydrazine. Biochem Pharmacol 34:4283–4289

    Google Scholar 

  20. Arduini A, Chen Z, Stern A (1986) Phenylhydrazine-induced changes in erythrocyte membrane surface lipid packing. Biochim Biophys Acta 862:65–71

    Google Scholar 

  21. Arese P, De Flora A (1990) Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 27:1–40

    Google Scholar 

  22. Arduini A, Storto S, Belfiglio M (1989) Mechanism of spectrin degradation induced by phenylhydrazine in intact human erythrocytes. Biochem Biophys Acta 979:1–6

    Google Scholar 

  23. Snyder LM, Fortier NL, Trainor J, Jacobs J, Leb L, Lubin B, Chiu D, Shohet S, Mohandas N (1985) Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest 76:1971–1977

    Google Scholar 

  24. Watanabe H, Kobayashi A, Yamamoto T, Suzuki S, Hayashi H, Yamazaki N (1990) Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. Free Radic Biol Med 9:507–514

    Google Scholar 

  25. Okabe E, Hess ML, Oyama M, Ito H (1983) Characterization of free radial-mediated damage of canine cardiac sarcoplasmic reticulum. Arch Biochem Biophys 225:164–177

    Google Scholar 

  26. Varecka L, Carafoli E (1982) Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J Biol Chem 257:7414–7421

    Google Scholar 

  27. Morelli A, Grasso M, Meloni T (1987) Favism: impairment of proteolytic systems in red blood cells. Blood 68:1753–1758

    Google Scholar 

  28. De Flora A, Morelli A, Grasso M (1987) Alterations of red blood cell proteolysis in favism. Biomed Biochim Acta 46:S184-S189

    Google Scholar 

  29. Low PS, Waugh SM, Zinke K (1985) The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science 227:531–533

    Google Scholar 

  30. Bors W, Buettner GR, Michel C, Saran M (1988) Calcium in lipid peroxidation: Does calcium interact with superoxide? Arch Biochem Biophys 266:446–451

    Google Scholar 

  31. Higgins AJ, Blackburn KJ (1984) Prevention of reperfusion damage in working rat hearts by calcium antagonists and calmoduling antagonists. J Mol Cell Cardiol 16:427–438

    Google Scholar 

  32. Otani H, Engelman RM, Rousou JA et al (1989) Improvement of myocardial function by trifluoperazine, a calmodulin antagonist, during experimental acute coronary artery occlusion and reperfusion. J Thorac Cardiovasc Surg 97:267–274

    Google Scholar 

  33. Malech HL, Gallin JL (1987) Neutrophils in human diseases. N Engl J Med 317:687–694

    Google Scholar 

  34. Lehrer RI, Ganz T, Selsted ME, Babior BM, Curnutte JT (1988) Neutrophils and host defense. Ann Intern Med 109:127–142

    Google Scholar 

  35. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Google Scholar 

  36. Morel F, Doussiere J, Vignais PV (1991) The superoxidegenerating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201:523–546

    Google Scholar 

  37. Hallett MB, Davies EV, Campbell AK (1990) Cell Calcium 11: 655–663

    Google Scholar 

  38. Gallin JI, Fauci AS (eds) (1983) Advances in host defense mechanisms vol. 3. Chronic granulomatous disease. Raven Press, New York

    Google Scholar 

  39. Biemond P, Swaak AJG, Koster JF (1984) Protective factors against oxygen-free radicals and hydrogen peroxide in rheumatoid arthritis synovial fluid. Arthritis Rheum 27:760–765

    Google Scholar 

  40. Kleinveld HA, Swaak AJG, Hack CE, Koster JF (1989) Interactions between oxygen-free radicals and proteins. Scand J Rheumatol 18:341–352

    Google Scholar 

  41. Merry P, Winyard PG, Morris CJ, Grootveld M, Blake DR (1989) Oxygen-free radicals, inflammation, and synovitis: the current status. Ann Rheum Dis 48:864–870

    Google Scholar 

  42. Igari T, Kaneda H, Horiuchi S, Ono S (1982) A remarkable increase of superoxide dismutase activity in synovial fluid of patients with rheumatoid arthritis. Clin Orthop 162:282–287

    Google Scholar 

  43. Hong Y, Li CH, Burgess JR, Change M, Salem A, Srikumar K, Reddy CC (1989) The role of selenium-dependent and selenium-independent glutathione peroxidasess in the formation of prostaglandin F2α. J Biol Chem 264:13793–13800

    Google Scholar 

  44. Malech HL, Gallin JI (1987) Neutrophils in human diseases. N Engl J Med 317:687–694

    Google Scholar 

  45. Mundy GR, Roodman GD (1987) Osteoclast ontogeny and function. In: Peck VW (ed) Bone and mineral research. Elsevier/North Holland, New York, pp. 209–280

    Google Scholar 

  46. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79:319–326

    Google Scholar 

  47. Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  48. Ross Garrett I, Boyce BF, Oreffo ROC, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Google Scholar 

  49. Fallon M, Silverton S, Smith P, Moskal T, Constantinescu C, Feldman R, Golub E, Shapiro I (1986) The oxidative metabolism of isolated osteoclasts is regulated by calcitropic agents (abstract) J Bone Miner Res 1 (suppl 1)

  50. Stock JL, Coderre JA, Levine PH (1984) Effects of calciumregulating hormones and drugs on monocyte chemiluminescence. J Clin Endocrinol Metab 55:956–960

    Google Scholar 

  51. Friedman J, Au WYW, Raisz LG (1968) Responses of fetal rat bone to thyrocalcitonin in tissue culture. Endocrinology 82:149–156

    Google Scholar 

  52. Ren W, Dziak R (1991) Effects of leukotrienes on osteoblastic cell proliferation. Calcif Tissue Int 49:197–201

    Google Scholar 

  53. Meghji S, Sandy JR, Scutt AM, Harvey W, Harris M (1988) Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins 36:139

    Google Scholar 

  54. Matsumoto H, Silverton SF, Debolt K, Shapiro IM (1991) Superoxide dismutase and catalase activities in the growth cartilage: relationship between oxidoreductase activity and chondrocyte maturation. J Bone Miner Res 6:569–574

    Google Scholar 

  55. Frank L, Sosenko IRS (1987) Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr 110:9–14

    Google Scholar 

  56. Demus-Oole A, Swierczewski E (1969) Glutathione peroxidase in rat liver during development. Biol Neonate 14:211–218

    Google Scholar 

  57. Mavelli I, Autuori F, Dini L, Spinedi A, Ciriolo MR, Rotilio G (1981) Correlation between superoxide dismutase, glutathione peroxidase and catalase in isolated rat hepatocytes during fetal development. Biochem Biophys Res Commun 102:911–916

    Google Scholar 

  58. Yoshioka T, Utsumi K, Sekiba K (1977) Superoxide dismutase activity and lipid peroxidation of the rat liver during development. Biol Neonate 32:147–153

    Google Scholar 

  59. Fryer AA, Hume R, Strange RC (1986) The development of glutathione S-transferase and glutathione peroxidase activities in human lung. Biochim Biophys Acta 883:448–453

    Google Scholar 

  60. Wright SW, Filer LJ Jr, Mason KE (1951) Vitamin E blood levels in premature and full-term infants. Pediatrics 7:386

    Google Scholar 

  61. Haga P (1981) Plasma vitamin E levels and vitamin E/*-lipoprotein relationships in small preterm infants during the early anemia of prematurity. Eur J Pediatr 136:143–147

    Google Scholar 

  62. Tanaka H, Mino M, Takeuchi T (1988) A nutritional evaluation of vitamin E status in very low birth weight infants with respect to changes in plasma and red blood cell tocopherol levels. J Nutr Sci Vitaminol 34:293–307

    Google Scholar 

  63. Gross RT, Bracci R, Rudolph N, Schroeder E, Kochen JA (1967) Hydrogen peroxide toxicity and detoxification in the erythrocytes of newborn infants. Blood 29:481–493

    Google Scholar 

  64. Rotilio G, Rigo A, Bracci R, Bagnoli F, Sargentini I, Brunori M (1977) Determination of red blood cell superoxide dismutase and glutathione peroxidase in newborns in relation to neonatal hemolysis. Clin Chim Acta 81:131–134

    Google Scholar 

  65. Bracci R, Buonocore G, Talluri B, Berni S (1988) Neonatal hyperbilirubinemia. Evidence for a role of the erythrocyte enzyme activities involved in the detoxification of oxygen radicals. Acta Paed Scand 77:349–356

    Google Scholar 

  66. Buonocore G, Berni S, Gioia D, Bracci R (1991) Characteristics and functional properties of red cells during the first days of life. Biol Neonate 60:137–144

    Google Scholar 

  67. Bracci R, Martini G, Buonocore G, Talluri B, Berni S, Ottaviani MF, Picchi MP, Casini A (1988) Changes in erythrocyte properties during the first hours of life: electron spin resonance of reacting sulfydryl groups. Pediatr Res 24:391–395

    Google Scholar 

  68. Shahal Y, Bauminger ER, Zmora E, Katz M, Mazor D, Horn S, Meyerstein N (1991) Oxidative stress in newborn erythrocytes. Pediatr Res 29:119–122

    Google Scholar 

  69. Winterbourn CC, Stern A (1987) Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 80:1486–1491

    Google Scholar 

  70. Tanswell AK, Freeman BA (1984) Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles. Pediatr Res 18:584–587

    Google Scholar 

  71. Tanswell AK, Freeman BA (1984) Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. II. The influence of maternal iron supplements upon fetal lung catalase activity. Pediatr Res 18:871–874

    Google Scholar 

  72. Tanswell AK, Tzaki MG, Byrne PJ (1986) Hormonal and local factors influence antioxidant enzyme activity of rat fetal lung cells in vitro. Exp. Lung Res. 11:49–59

    Google Scholar 

  73. Frank L, Lewis PL, Sosenko IRS (1985) Dexamethasone stimulation of fetal rat lung antioxidant enzyme activity in parallel with surfactant stimulation. Pediatrics 75:569–574

    Google Scholar 

  74. Buonocore G, Berni S, Bagnoli F, Gioia D, De Nisi G, Bracci R (1990) Erythrocyte antioxidant enzymatic system in preterm newborn. In: Bracci R, Bagnoli F, Buonocore G (eds) Intl Congr on Neonatal Hematology and Immunology, Siena April 22–24, 1990, p 48

  75. Ahmad H, Medh RD, Singh SV, Caccuri AM, Ansari GAS, Awasthi YC (1989) Anionic glutathione S-transferases of human erythrocytes, placenta, and lung: evidence for structural differences. Enzyme 42:129–135

    Google Scholar 

  76. Toh N, Inoue T, Kuraya M, Tanaka H, Kimoto E (1987) Antioxidative activities of a reductant in the ultrafiltrate of human placental homogenate. Biol Res Pregn 8:47–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracci, R. Calcium involvement in free radical effects. Calcif Tissue Int 51, 401–405 (1992). https://doi.org/10.1007/BF00296670

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296670

Navigation