Skip to main content
Log in

Evidence for vitamin D-independent active calcium absorption in newborn piglets

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The role of 1,25-dihydroxycholecalciferol (calcitriol) for intestinal calcium (Ca2+) absorption was studied in newborn (<1 week old) and weaned piglets (>6 weeks old). In both groups, normal piglets and piglets suffering from inherited pseudo vitamin D-deficiency rickets, type I (PVDRI) were used. In this inherited disorder, renal production of calcitriol is absent. Plasma samples were assayed for calcitriol and total Ca, and dissociation constants (Kd) and maximum binding capacities (Bmax) of intestinal calcitriol receptors were determined under equilibrium conditions at 4°C. Unidirectional Ca2+-flux rates were measured across stripped duodenal mucosae in Ussing chambers in the absence of electrochemical gradients. The plasma calcitriol concentrations of neonatal (26.5±7.1 pg/ml, n=11; \(\bar x\)± SEM) and weaned PVDRI piglets (18.8±5.7 pg/ml, n=8)were unphysiologically low and differed significantly from control animals (83.6±14.8 pg/ml, n=8, and 86.9±9.6 pg/ml, n=11, respectively). However, newborn PVDRI piglets had normal plasma Ca levels at least during the first days of life. They became hypocalcemic and developed clinical symptoms of rickets during the following weeks. In newborn PVDRI and control piglets, Bmax was significantly lower (84±28 fmol/mg protein and 127±55 fmol/mg protein, n=9, respectively) than in weaned piglets (741±82 fmol/mg protein, n=9, and 778±121 fmol/mg protein, n=8, respectively). Significant net Ca2+-fluxes were found in both newborn PVDRI and control piglets (88.8±25.1 nmol · cm-2 · h-1, n=6, and 86.5±10.5 nmol · cm−2 · h−1,n=9, respectively). However, active net Ca2+ absorption was completely absent in weaned PVDRI piglets. These results indicate the presence of vitamin D-independent mechanisms for active intestinal Ca2+ absorption during early postnatal life in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reichel H, Koeffler HP, Norman AW (1989) The role of the vitamin D endocrine system in health and disease. N Engl J Med 320:980–991

    CAS  PubMed  Google Scholar 

  2. Nemere I, Norman AW (1990) Transcaltachia, vesicular calcium transport, and microtubule-associated calbindin-D28K: emerging views of 1,25-dihydroxyvitamin D3-mediated intestinal calcium absorption. Miner Electrolyte Metab 16:109–114

    CAS  PubMed  Google Scholar 

  3. Favus MJ (1985) Factors that influence absorption and secretion of calcium in the small intestine and colon. Am J Physiol 248:G147-G157

    CAS  PubMed  Google Scholar 

  4. DeLuca HF (1988) The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 2:224–236

    CAS  PubMed  Google Scholar 

  5. Staun M (1991) Calbindin-D of human small intestine and kidney. Dan Med Bull 38:271–282

    CAS  PubMed  Google Scholar 

  6. Gross M, Kumar R (1990) Physiology and biochemistry of vitamin D-dependent calcium binding proteins. Am J Physiol 259:F195-F209

    CAS  PubMed  Google Scholar 

  7. Bronner F (1990) Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab 16:94–100

    CAS  PubMed  Google Scholar 

  8. Pansu D, Bellaton C, Roche C, Bronner F (1989) Theophylline inhibits transcellular Ca transport in intestine and Ca binding by CaBP. Am J Physiol 257:G935-G943

    CAS  PubMed  Google Scholar 

  9. Feher JJ, Fullmer CS, Wasserman RH (1992) Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 262:C517-C526

    CAS  PubMed  Google Scholar 

  10. Halloran BP, DeLuca HF (1980) Calcium transport in small intestine during early development: role of vitamin D. Am J Physiol 239:G473-G479

    CAS  PubMed  Google Scholar 

  11. Lee DBN, Hardwick LL, Hu MS, Jamgotchian N (1990) Vitamin D-independent regulation of calcium and phosphate absorption. Miner Electrolyte Metab 16:167–173

    CAS  PubMed  Google Scholar 

  12. Halloran BP, DeLuca HF (1981) Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D3 during neonatal development in the rat. J Biol Chem 256:7338–7342

    CAS  PubMed  Google Scholar 

  13. Horiuchi N, Clemens TL, Schiller AL, Holick MF (1985) Detection and developmental changes of the 1,25-(OH)2D3 receptor concentration in mouse skin and intestine. J Invest Dermatol 84:461–464

    Article  CAS  PubMed  Google Scholar 

  14. Duncan WE, Walsh PG, Kowalski MA Haddad JG (1984) Ontogenesis of the rabbit intestinal receptor for 1,25-dihydroxyvitamin D3: evidence for increased receptor during late suckling and lactating periods. Comp Biochem Physiol 78A: 333–336

    CAS  Google Scholar 

  15. Gleason WA Jr, Lankford GL (1982) Intestinal calcium-binding protein in the developing rat duodenum. Pediatr Res 16:403–406

    CAS  PubMed  Google Scholar 

  16. Bruns MEH, Bruns DE, Avioli LV (1979) Vitamin D-dependent calcium-binding protein of rat intestine: changes during postnatal development and sensitivity to 1,25-dihydroxycholecalciferol. Endocrinology 105:934–938

    CAS  PubMed  Google Scholar 

  17. Delorme AC, Marche P, Garel JM (1979) Vitamin D-dependent calcium-binding protein. Changes during gestation, prenatal and postnatal development in rats. J Dev Physiol 1:181–194

    CAS  PubMed  Google Scholar 

  18. Toverud SU (1989) Calcium absorption and vitamin D function in the small intestine during development. In: Lebenthal E (ed) Human gastrointestinal development Raven Press, New York, pp 471–486

    Google Scholar 

  19. Winkler I, Schreiner F, Harmeyer J (1986) Absence of renal 25-hydroxycholecalciferol-1-hydroxylase activity in a pig strain with vitamin D-dependent rickets. Calcif Tissue Int 38:87–94

    CAS  PubMed  Google Scholar 

  20. Lachenmaier-Currle U, Harmeyer J (1988) Intestinal absorption of calcium in newborn piglets. Role of vitamin D. Biol Neonate 53:327–335

    CAS  PubMed  Google Scholar 

  21. Harmeyer J, Kaune R (1990) Two unique animals models for the study of human metabolic bone diseases: In: Pliska V, Stranziger G (eds) Farm animals in biomedical research. Advances in Animal Breeding and Genetics, Vol 5, Paul Parey, Hamburg, Berlin, pp 111–130

    Google Scholar 

  22. Lachenmaier-Currle U, Breves G, Harmeyer J (1989) Role of 1,25-(OH)2D3 during pregnancy: studies with pigs suffering from pseudo-vitamin D-deficiency rickets, type I. Quart J Exp Physiol 74:875–881

    CAS  Google Scholar 

  23. Brommage R, Baxter DC, Gierke LW (1990) Vitamin D-independent intestinal calcium and phosphorus absorption during reproduction. Am J Physiol 259:G631-G636

    CAS  PubMed  Google Scholar 

  24. Buffenstein R, Skinner DC, Yahav S, Moodley GP, Cavaleros M, Zachen D, Ross FP, Pettifor JM (1991) Effect of oral cholecalciferol supplementation at physiological and supraphysiological doses in naturally vitamin D3-deficient subterranean damara mole rats (Cryptomys damarensis). J Endocrinol 131:197–202

    CAS  PubMed  Google Scholar 

  25. Radde IC, Davis D, Sheepers J, McKercher HG (1980) Bidirectional transmucosal 45Ca and 32P fluxes across the small intestine of the young piglet: relationship to intestinal Ca2+-Mg2+-ATPase activity and postnatal age. In: DeLuca HF, Anast CS (eds) Pediatric diseases related to calcium. Blackwell Scientific Publishers, Oxford, London, pp 153–163

    Google Scholar 

  26. Schröder B, Kaune R, Harmeyer J (1990) Studies of the porcine intestinal calcitriol receptor in pseudo-vitamin D deficiency type I. Clin Sci 79:409–414

    PubMed  Google Scholar 

  27. Schröder B, Breves G, Pfeffer E (1990) Binding properties of duodenal 1,25-dihydroxyvitamin D3 receptors as affected by phosphorus depletion in lactating goats. Comp Biochem Physiol 96A:495–498

    Google Scholar 

  28. Schröder B, Kaune R, Harmeyer J (1991) Effects of calcitriol on stimulation of ion transport in pig jejunal mucosa. J Physiol London 433:451–465

    PubMed  Google Scholar 

  29. Fox J, Maunder EMW, Randall VA, Care AD (1985) Vitamin D-dependent rickets type I in pigs. Clin Sci 69:541–548

    CAS  PubMed  Google Scholar 

  30. Kaune R, Harmeyer J (1987) Vitamin D3 metabolism in a pig strain with pseudovitamin D-deficiency rickets, type I. Acta Endocrinol 115:345–352

    CAS  PubMed  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  32. Van Os CH (1987) Transcellular calcium transport in intestinal and renal epithelial cells. Biochim Biophys Acta 906:195–222

    PubMed  Google Scholar 

  33. Bronner F (1992) Current concepts of calcium absorption: an overview. J Nutr 122:641–643

    CAS  PubMed  Google Scholar 

  34. Karbach U (1992) Paracellular calcium transport across the small intestine. J Nutr 122:672–677

    CAS  PubMed  Google Scholar 

  35. Pansu D, Ballaton C, Bronner F (1983) Developmental changes in the mechanisms of duodenal calcium transport in the rat. Am J Physiol 244:G20-G26

    CAS  PubMed  Google Scholar 

  36. Holick MF, Bleiner-Bossaller A, Schnoes HK, Kasten PM, Boyle IT, DeLuca HF (1973) 1,24,25-Trihydroxyvitamin D3: a metabolite of vitamin D3 effective on intestine. J Biol Chem 248:6691–6696

    CAS  PubMed  Google Scholar 

  37. Wolf H, Kreuder J, Otten A, Klingmüller V (1991) Efficiency and complications of calcium and phosphorus supplementation in very low birth weight infants. In: Norman AW, Bouillon R, Thomasset M (eds) Vitamin D. Gene regulation, structure-function analysis and clinical application. Walter de Gruyter, Berlin, New York, pp 749–750

    Google Scholar 

  38. Holland PC, Wilkinson AR, Diez J, Lindsell DRM (1990) Prenatal deficiency of phosphate, phosphate supplementation, and rickets in very-low-birthweight infants. Lancet 335:697–701

    CAS  PubMed  Google Scholar 

  39. Chesney RW, Hamstra AJ, DeLuca HF (1981) Rickets of prematurity: supranormal levels of serum 1,25-dihydroxyvitamin D. Am J Dis Child 135:34–37

    CAS  PubMed  Google Scholar 

  40. Chesney RW (1990) Requirements and upper limits of vitamin D intake in the term neonate, infant, and older child. J Pediatr 116:159–166

    CAS  PubMed  Google Scholar 

  41. Cooke R, Hollis B, Conner C, Watson D Werkman S, Chesney R (1990) Vitamin D and mineral metabolism in the very low birth weight infant receiving 400 IU of vitamin D. J Pediatr 116:423–428

    CAS  PubMed  Google Scholar 

  42. Delvin EE, Richard P, Pothier P, Ménard D (1990) Presence and binding characteristic of calcitriol receptors in human fetal gut. FEBS Lett 262:55–57

    Article  CAS  PubMed  Google Scholar 

  43. Brun P, Dupret JM, Perret C, Thomasset M, Mathieu H (1987) Vitamin D-dependent calcium-binding proteins (CaBPs) in human fetuses: comparative distribution of 9K CaBP mRNA and 28K CaBP during development. Pediatr Res 21:362–367

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, B., Kaune, R., Schlumbohm, C. et al. Evidence for vitamin D-independent active calcium absorption in newborn piglets. Calcif Tissue Int 52, 305–309 (1993). https://doi.org/10.1007/BF00296656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296656

Key words

Navigation