Skip to main content
Log in

Classification of the cerebral edemas with reference to hydrocephalus and pseudotumor cerebri

  • Original Papers
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Cerebral edema is a common clinical disorder that results from an abnormal increase in water content within the extracellular (EC) compartment of the brain. It is distinguished from two other types of brain bulk enlargement: (1) vascular swelling, caused by arterial dilatation or venous obstruction; and (2) cellular swelling, caused by cytotoxic injuries or metabolic storage. Under normal conditions, the EC compartment has two fluids, the interstitial fluid (ISF) and the cerebrospinal fluid (CSF), and extends from the blood brain barrier (BBB) through a series of 100 to 150-Å-wide intercellular spaces that are anatomically continuous with the CSF spaces. There are four primary types of EC edema: (1) vasogenic edema, which results from an increase in brain capillary permeability, the most common type, in which leakage of plasma constituents into the brain follows the pathways of ISF bulk flow and is governed by the interaction of systemic arterial pressure and tissue resistance; (2) osmotic edema, which results from an unfavorable osmotic gradient between the plasma and ISF across an intact BBB; (3) compressive edema, which results from obstruction of ISF bulk flow pathways; and (4) hydrocephalic edema, which results from obstruction of CSF bulk flow pathways. In this latter type of edema, distension of the collecting channels proximal to the block leads to retrograde flooding of the EC compartment with the formation of periventricular edema. The syndrome of pseudotumor cerebri includes several different types of brain bulk enlargement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anton G (1904) Gehirnoedem and Compression. In: Flatau L, Jacobsohn L, Minor L (eds) Handbuch der pathologischen Anatomic des Nervensystems, vol 1. Karger, Berlin, pp 395–400

    Google Scholar 

  2. Baker RN, Cancilla PA, Pollock PS, Frommes SP (1971) The movement of exogenous protein in experimental cerebral edema. An electron microscopic study after freeze injury. J Neuropathol Exp Neurol 30:668–679

    Google Scholar 

  3. Beck E, Daniel PM, Matthews WB, Stevens DL, Alpers MP, Asher DM, Gajdusek DC, Gibbs CJ Jr (1969) Creutzfeld-Jakob disease. The neuropathology of a transmission experiment. Brain 92:699–716

    Google Scholar 

  4. Bercaw BL, Green M (1970) Transport of intrathecal 131I RISA in benign intracranial hypertension. Neurology 20:787–790

    Google Scholar 

  5. Blakemore BL, Palmer AC, Noel PRB (1972) Ultrastructural changes in isoniazid-induced brain oedema in the dog. J Neurocytol 1:263–278

    Google Scholar 

  6. Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, Chichester

    Google Scholar 

  7. Calabrese VP, Selhorst JB, Harbison JW (1978) Cerebrospinal fluid infusion test in pseudotumor cerebri. Ann Neurol 4:173

    Google Scholar 

  8. Clark RG, Milhorat TH (1970) Experimental hydrocephalus. III. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 32:400–413

    Google Scholar 

  9. Clark RG, McGrath PP, Milhorat TH, Ewell JB (1969) Ultrastructural white matter changes in acute experimental hydrocephalus in the rhesus monkey. In: Arceneaux CJ (ed) Proceedings of the 27th Annual Meeting of the Electron Microscopy Society of America. Elsevier, Baton Rouge, pp 344–345

    Google Scholar 

  10. DiMattio J, Hochwald GM, Malhan C, Wald A (1975) Effects of changes in serum osmolarity on bulk flow of fluid into cerebral ventricles and on brain water content. Pflügers Arch 359:253–264

    Google Scholar 

  11. Dóczi T, Szerdahelyi P, Gulya K, Kiss J (1982) Brain water accumulation after the central administration of vasopressin. Neurosurgery 11:402–407

    Google Scholar 

  12. Foncin JF (1967) Electron microscopic observations in Creutzfeld-Jakob disease. In: Klatzo I, Seitelberger F (eds) Brain edema. Springer, New York Berlin Heidelberg, pp 171–179

    Google Scholar 

  13. Go KG (1981) The classification of brain edema. In: Vlieger M de, Lange SA de, Beks JWF (eds) Brain edema. Wiley, New York, pp 3–9

    Google Scholar 

  14. Go KG, Patberg WR, Teelkan AW, Gazendam J (1976) The Starling hypothesis of capillar fluid exchange in relation to brain edema. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, New York Berlin Heidelberg, pp 63–70

    Google Scholar 

  15. Go KG, Gazendam J, Van Zantem AK (1979) Influence of hypoxia on the composition of isolated edema fluid in cold-induced brain edema. J Neurosurg 51:78–84

    Google Scholar 

  16. Guis JA, Grier DH (1950) Venous adaptation following bilateral radical neck dissection with excision of the jugular veins. Surgery 28:305–321

    Google Scholar 

  17. Hammer M, Sorenson PS, Gjerris F, Larsen K (1982) Vasopressin in the cerebrospinal fluid of patients with normal pressure hydrocephalus and benign intracranial hypertension. Acta Endocrinol 100:211–215

    Google Scholar 

  18. Hirano A, Levine S, Zimmerman HM (1967) Experimental cyanide encephalopathy: electron microscopic observations of early lesions in the white matter. J Neuropathol Exp Neurol 26:200–213

    Google Scholar 

  19. Hirano A, Zimmerman HM, Levine S (1968) Intramyelinic and extracellular spaces in triethyltin intoxication. J Neuropathol Exp Neurol 27:571–580

    Google Scholar 

  20. Jennett B (1981) Clinical brain swelling: edema or engorgement? In: Vlieger M de, Lange SA de, Beks JWF (eds) Brain edema. Wiley, New York, pp 61–65

    Google Scholar 

  21. Johansson BB, Linder LE (1980) The blood-brain barrier in renal hypertensive rats. Clin Exp Hypertens 2:983–993

    Google Scholar 

  22. Kalbag RM, Woolf AL (1967) Cerebral venous thrombosis. Oxford University Press, London

    Google Scholar 

  23. Katzman R, Pappius HM (1973) Brain electrolytes and fluid metabolism. Williams & Wilkins, Baltimore

    Google Scholar 

  24. Kesterson JW, Carlton WW (1971) Histopathologic and enzyme histochemical observations of the cuprizone-induced brain edema. Exp Mol Pathol 15:82–96

    Google Scholar 

  25. Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14

    Google Scholar 

  26. Klatzo I, Piraux A, Laskowski EJ (1958) The relationship between edema, blood-brain barrier and tissue elements in a local brain injury. J Neuropathol Exp Neurol 17:548–564

    Google Scholar 

  27. Klatzo I, Chui E, Fujiwara K (1981) Aspects of blood-brain barrier in brain edema. In: Vlieger M de, Lange SA de, Beks JWF (eds) Brain edema. Wiley, New York, pp 11–18

    Google Scholar 

  28. Lampert P, O'Brien J, Garrett R (1973) Hexachlorophene encephalopathy. Acta Neuropathol 23:326–333

    Google Scholar 

  29. Langfitt TW (1973) Increased intracranial pressure. In: Youmans JR (ed) Neurological surgery, vol 1. Saunders, Philadelphia, pp 443–495

    Google Scholar 

  30. Langfitt TW, Kassell NF (1968) Cerebral vasodilatation produced by brain stem stimulation: neurogenic control vs. autoregulation. Am J Physiol 215:90–97

    Google Scholar 

  31. Mann JD, Johnson RN, Butler AB, Bass NH (1983) Cerebrospinal fluid circulatory dynamics in pseudotumor cerebri and response to steroid therapy. In: Wood JH (ed) Neurobiology of the cerebrospinal fluid, vol 2. Plenum Press, New York, pp 739–751

    Google Scholar 

  32. Milhorat TH (1972) Hydrocephalus and the cerebrospinal fluid. Williams & Wilkins, Baltimore

    Google Scholar 

  33. Milhorat TH (1978) Pediatric neurosurgery. Davis, Philadelphia

    Google Scholar 

  34. Milhorat TH (1987) Cerebrospinal fluid and the brain edemas. New York Society of Neurosurgery, New York

    Google Scholar 

  35. Milhorat TH (1992) Pseudotumor cerebri. In: Adelman G, Smith B (eds) Neuroscience year: supplement to the encyclopedia of neuroscience. Birkhäuser, Boston

    Google Scholar 

  36. Milhorat TH, Hammock MK (1971) Isotope ventriculography. Interpretation of ventricular size and configuration in hydrocephalus. Arch Neurol 25:1–8

    Google Scholar 

  37. Milhorat TH, Clark RG, Hammock MK (1970) Experimental hydrocephalus. II. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg 32:390–399

    Google Scholar 

  38. Milhorat TH, Clark RG, Hammock MK, McGrath PP (1970) Structural, ultrastructural and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    Google Scholar 

  39. Milhorat TH, Johnson WD, Dow-Edwards DD (1989) Relationship of blood pressure, blood flow, and edema following experimental brain injury. Neurol Res 11:29–33

    Google Scholar 

  40. Morfit HM (1952) Simultaneous bilateral radical neck dissection: total ablation of both internal and external jugular venous systems at one setting. Surgery 31:216–225

    Google Scholar 

  41. Pappius HM, Oh JH, Dossetor JB (1967) The effects of rapid hemodialysis on brain tissues and cerebrospinal fluid of dogs. Can J Physiol Pharmacol 45:129–147

    Google Scholar 

  42. Parrot MJ (1873) Étude sur le ramollissement de l'encéphale chez le nouveau-né. Arch Physiol Norm Pathol 5:59–175

    Google Scholar 

  43. Partin JS, McAdams AJ, Partin JC, Schubert WK, McLaurin RL (1978) Brain ultrastructure in Reye's disease. II. Acute injury and recovery processes in three children. J Neuropathol Exp Neurol 37:796–819

    Google Scholar 

  44. Poirier P, Charpy A, Nicholas A (1914) Traité d'anatomie humaine, vol 4. Masson, Paris

    Google Scholar 

  45. Pollay M (1985) Blood-brain barrier; cerebral edema. In: Wilkins RH, Rengachary SS (eds) Neurosurgery, vol 1. McGraw-Hill, New York, pp 322–331

    Google Scholar 

  46. Pollay M, Roberts PA (1980) Blood-brain barrier: a definition of normal and altered function. Neurosurgery 6:675–685

    Google Scholar 

  47. Raichle ME, Eichling JO, Grubb RL, Hartman BK (1976) Central noradrenergic regulation of brain microcirculation. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, New York Berlin Heidelberg, pp 11–18

    Google Scholar 

  48. Ray BS, Dunbar HS (1951) Thrombosis of the dural venous sinuses as a cause of “pseudotumor cerebri”. Ann Surg 134:376–386

    Google Scholar 

  49. Reichardt M (1905) Zur Entstehung des Hirndrucks bei Hirngeschwülsten und anderen Hirnkrankheiten und über eine bei diesen zu beobachtende besondere Art der Hirnschwellung. Dtsch Z Nervenheilkd 28:306–310

    Google Scholar 

  50. Reulen HJ, Tsuyumu M (1981) Pathophysiology of formation and natural resolution of vasogenic brain edema. In: Vlieger M de, Lange SA de, Beks JWF (eds) Brain edema. Wiley, New York, pp 31–48

    Google Scholar 

  51. Reulen HJ, Prioleau GR, Tsuyumu M, Fenske AR (1983) Clearance of edema fluid into cerebrospinal fluid. Mechanism for resolution of vasogenic brain edema. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 2. Plenum Press, New York, pp 777–787

    Google Scholar 

  52. Rizzuto N, Gonatas NK (1974) Ultrastructural study of effect of methionine sulfoximine on developing and adult rat cerebral cortex. J Neuropathol Exp Neurol 33:237–250

    Google Scholar 

  53. Rosenberg GA, Saland L, Kyner WT (1983) Pathophysiology of periventricular tissue changes with raised CSF pressure in cats. J Neurosurg 59:606–611

    Google Scholar 

  54. Rubin RC, Hochwald GM, Tiell M, Mizutani H, Ghatak N (1976) Hydrocephalus. I. Histological and ultrastructural changes in the preshunted cortical mantle. Surg Neurol 5:109–114

    Google Scholar 

  55. Rymer MM, Fishman RA (1973) Protective adaptation of brain to water intoxication. Arch Neurol 28:49–54

    Google Scholar 

  56. Sahs AL, Joynt RJ (1956) Brain swelling of unknown cause. Neurology 6:791–803

    Google Scholar 

  57. Schmaus H (1901) Vorlesungen über die pathologische Anatomie des Rückenmarks. Bergmann, Wiesbaden

    Google Scholar 

  58. Siejö BK, Plum F (1971) Cerebral energy metabolism in normoxia and in hypoxia. Acta Anaesthesiol Scand 45:81–101

    Google Scholar 

  59. Sklar FH (1985) Pseudotumor cerebri. In: Wilkins RH, Rengachary SS (eds) Neurosurgery, vol 1. McGraw-Hill, New York, pp 350–353

    Google Scholar 

  60. Stern J, Hochwald GM, Wald A, Gandhi M (1977) Visualization of brain interstitial fluid movement during osmotic disequilibrium. Exp Eye Res 25:475–482

    Google Scholar 

  61. Vorstrup S, Christensen J, Gjerris F, Sørensen PS, Thomsen AM, Paulson OB (1987) Cerebral blood flow in patients with normal-pressure hydrocephalus before and after shunting. J Neurosurg 66:379–387

    Google Scholar 

  62. Wald A, Hochwald GM, Gandhi M (1978) Evidence for the movement of fluid, macromolecules, and ions from the brain extracellular space to the CSF. Brain Res 151:283–290

    Google Scholar 

  63. Wasterlain CG, Torach RM (1968) Cerebral edema in water intoxication. Arch Neurol 19:79–87

    Google Scholar 

  64. Winn HR, Rubio GR, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. Am J Physiol 241:235–242

    Google Scholar 

  65. Zülch KJ (1967) Neuropathological aspects and histological criteria of brain edema and brain swelling. In: Klatzo I, Seitelberger F (eds) Brain edema. Springer, New York Berlin Heidelberg, pp 65–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milhorat, T.H. Classification of the cerebral edemas with reference to hydrocephalus and pseudotumor cerebri. Child's Nerv Syst 8, 301–306 (1992). https://doi.org/10.1007/BF00296558

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296558

Key words

Navigation