Skip to main content
Log in

The role of morphogens in endochondral ossification

  • Orthopedic Surgical Forum
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The formation of bone occurs normally by one of two developmental processes: intramembranous or endochondral ossification. Endochondral ossification occurs in the morphogenesis of the limb buds and growth plates, and in the regeneration of bone following injury (fracture callus). Two classes of diffusible morphogen-like molecules (MLMs) involved in limb development are the bone morphogenetic proteins (BMPs) and retinoic acid (RA). These MLMs are associated, respectively, with the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) of the primitive limb bud. They function as potent regulators of pattern formation and are involved in tissue proliferation and differentiation. The presence of endochondral ossification in fracture callus suggests a role for MLMs in that process as well. To date, virtually nothing is known about the role of morphogens in the regeneration of bone (fracture healing). In this article, we review the current knowledge of MLMs in bone formation and propose a theory on their role in fracture healing. We hypothesize that MLMs involved in fracture healing may also express spatial and temporal information. A more complete understanding of the role of morphogens in both limb development and fracture healing is of major importance to practicing orthopedists and their patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulth A (1989) Current concepts of fracture healing. Clin Orthop Rel Res 249:265–284

    Google Scholar 

  2. Iannotti JP (1990) Growth plate physiology and pathology. Orthop Clin N Am 21:1–17

    Google Scholar 

  3. Brighton CT (1984) Principles of fracture healing. Part I. The biology of fracture repair. Instr Course Lect 32:60–80

    Google Scholar 

  4. Wolpert L (1989) Positional information revisited. Development Supplement 3–12

  5. Canalis E (1985) Effect of growth factors on bone cell replication and differentiation. Clin Orthop Rel Res 193:246–263

    Google Scholar 

  6. Raisz LG (1988) Hormonal regulation of bone growth and remodelling. Ciba Found Symp 136:226–238

    Google Scholar 

  7. Raisz LG, Kream BE (1983) Regulation of bone formation. I. N Engl J Med 309:29–35

    Google Scholar 

  8. Raisz LG, Kream BE (1983) Regulation of bone formation. II. N Engl J Med 309:83–89

    Google Scholar 

  9. Wozney JM, Rosen V Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation; molecular clones and activities Science 242:1528–1534

    Google Scholar 

  10. Urist MR (1965) Bone formation by autoinduction. Science 150:893–899

    Google Scholar 

  11. Lyons KM, Pelton RW, Hogan BL (1990) Organogenesis and pattern formation in the mouse; RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109:833–844

    Google Scholar 

  12. Mercola M, Stiles CD (1988) Growth factor superfamilies and mammalian embryogenesis. Development 102:451–460

    Google Scholar 

  13. Pelton RW, Nomura S, Moses HL, Hogan BLM (1989) Expression of transforming growth factor β2 RNA during murine embryogenesis. Development 106:759–767

    Google Scholar 

  14. Lyons KM, Pelton RW, Hogan BL (1989) Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-β-like genes coordinately regulate aspects of embryonic development. Genes Dev 3:1657–1668

    Google Scholar 

  15. Gelbart WM (1989) The decapentaplegic gene: a TGF-β homologue controlling pattern formation in Drosophila. Development (Supplement):65–74

  16. Heine UI, Munoz EF, Flanders KC, Ellingsworth LR, Lam HP, Thompson NL, Roberts AB, Sporn MB (1987) Role of transforming growth factor-β in the development of the mouse embryo. J Cell Biol 105:2861–2876

    Google Scholar 

  17. Urist MR, Iwata H, Ceccotti PL, Dorfman RL, Boyd SD, McDowell RM, Chien C (1973) Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA 70:3511–3515

    Google Scholar 

  18. Urist MR, DeLange RJ, Finerman GAM (1983) Bone cell differentiation and growth factors. Science 220:680–686

    Google Scholar 

  19. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P, Luxenberg DP, McQuaid D, Moutsatsos IK, Nove J, Wozney JM (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87:2220–2224

    Google Scholar 

  20. Kaplan FS, Tabas JA, Zasloff MA (1990) Fibrodysplasia Ossificans Progressiva: a clue from the fly? Calcif Tissue Int 47:117–125

    Google Scholar 

  21. Dollé P, Izpisua-Belmonte JC, Falkenstein H, Renucci A, Duboule D (1989) Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 342:767–772

    Google Scholar 

  22. Smith SM, Pang K, Sundin O, Wedden SE, Thaller C, Eichele G (1989) Molecular approaches to vertebrate limb morphogenesis. Development (Supplement): 121–131

  23. Tamura K, Ohsugi K, Ide H (1990) Distribution of retinoids in the chick limb bud: analysis with monoclonal antibody. Dev Biol 140:20–26

    Google Scholar 

  24. Tickle C, Summerbell D, Wolpert L (1975) Positional signalling and specification of digits in chick limb morphogenesis. Nature 254:199–202

    Google Scholar 

  25. Lewis J, Martin P (1989) Limbs: a pattern emerges. Nature 342:734–735

    Google Scholar 

  26. Tickle C, Alberts B, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296:564–566

    Google Scholar 

  27. Tickle C, Lee J, Eichele G (1985) A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development Dev Biol 109:82–95

    Google Scholar 

  28. Thaller C, Eichele G (1987) Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628

    Google Scholar 

  29. Brockes J (1991) We may not have a morphogen. Nature 350:15

    Google Scholar 

  30. Wanek N, Gardiner DM, Muneoka K, Bryant SV (1991) Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature 350:81–83

    Google Scholar 

  31. Noji S, Nohno T, Koyama E, Muto K, Ohyama K Aoki Y, Tamura K, Ohsugi K, Ide H, Taniguchi S, Saito T (1991) Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud. Nature 350:83–86

    Google Scholar 

  32. Dollé P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ, Chambon P (1989) Differential expression of genes encoding a, β, and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342:702–705

    Google Scholar 

  33. Noji S, Yamaai T, Koyama E, Nohno T, Taniguchi S (1989) Spatial and temporal expression pattern of retinoic acid receptor genes during mouse bone development. FEBS Lett 257:93–96

    Google Scholar 

  34. Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629

    Google Scholar 

  35. Oro AE, Umesono K, Evans RM (1989) Steroid hormone receptor homologs in development. Development (Supplement): 133–140

  36. Blomhoff R, Green MH, Berg T, Norum KR (1990) Transport and storage of vitamin A. Science 250:399–404

    Google Scholar 

  37. Maden M, Ong DE, Summerbell D, Chytil F (1988) Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335:733–735

    Google Scholar 

  38. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg 60B:150–162

    Google Scholar 

  39. Simmons DJ (1985) Fracture healing perspectives. Clin Orthop Rel Res 200:100–113

    Google Scholar 

  40. Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T, Hirohata K (1990) The osteogenetic potential of fracture haematoma. J Bone Joint Surg 72B:822–829

    Google Scholar 

  41. Nilsson OS, Urist MR, Dawson EG, Schmalzried TP, Finerman GAM (1986) Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg 68B:635–642

    Google Scholar 

  42. Johnson EE, Urist MR, Finerman GAM (1988) Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. Clin Orthop Rel Res 230:257–265

    Google Scholar 

  43. Johnson EE, Urist MR, Finerman GAM (1990) Distal metaphyseal tibial nonunion: deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein. Clin Orthop Rel Res 250:234–240

    Google Scholar 

  44. Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wang EA, Wozney JM, Gross JM, Glasser DB (1991) Recombinant BMP-2a bone induction in a rat orthotopic model. Trans 37th Ann Meeting Orthop Res Soc 16(2):410

    Google Scholar 

  45. Kawamura M, Urist MR (1988) Induction of callus formation by implants of bone morphogenetic protein and associated bone matrix noncollagenous proteins. Clin Orthop Rel Res 236:240–248

    Google Scholar 

  46. Reid L (1990) From gradients to axes, from morphogenesis to differentiation. Cell 63:875–882

    Google Scholar 

  47. Paralkar VM, Nandedkar AKN, Pointer RH, Kleinman HK, Reddi AH (1990) Interaction of osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J Biol Chem 265:17281–17284

    Google Scholar 

  48. Dickson IR, Walls J, Webb S (1989) Vitamin A and bone formation. Different responses to retinol and retinoic acid of chick bone cells in organ culture. Biochim Biophys Acta 1013:254–258

    Google Scholar 

  49. Hough S, Avioli LV, Muir H, Gelderblom D, Jenkins G, Kurasi H, Slatopolsky Bergfield MA, Teitelbaum SL (1988) Effects of hypervitaminosis A on the bone and mineral metabolism of the rat. Endocrinology 122:2933–2939

    Google Scholar 

  50. Sowers MR, Wallace R (1990) Retinol, supplemental vitamin A and bone status. J Clin Epidemiol 43:693–699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, J.T., Kaplan, F.S. The role of morphogens in endochondral ossification. Calcif Tissue Int 50, 283–289 (1992). https://doi.org/10.1007/BF00296294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296294

Keywords

Navigation