Skip to main content
Log in

Supranucleosomal organization of chromatin

Electron microscopic visualization of long polynucleosomal chains

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A systematic study of the effect of different ionic conditions on the morphology of the 25–30 nm chromatin fiber from chicken erythrocytes has revealed that, as the ionic strength is increased, knobby fibers with a clear superbead structure are formed in the presence of either Mg++ or Na+, or both. A further increase in ionic strength results in smooth chromatin fibers due to a tight packing of superbeads. Cross-linking such fibers with formaldehyde and reversal of the ionic conditions, demonstrates the superbead structures underlying the smooth fibers observed at high ionic concentrations. The average size of the superbeads is 34 nm along the length of the fibers, in agreement with the value found in embedded sea cucumber chromatin. A second class of superbeads has an average length of 25 nm and probably corresponds to partially disrupted structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azorín, F., Martínez, A.B., Subirana, J.A.: Organization of nucleosomes and spacer DNA in chromatin fibers. Int. J. Biol. Macromol. 2, 81–92 (1980)

    Google Scholar 

  • Bustin, M., Goldblatt, D., Sperling, R.: Chromatin structure visualization by immunoelectron microscopy. Cell 7, 297–304 (1976)

    Google Scholar 

  • Finch, J.T., Klug, A.: Solenoidal model for superstructure in chromatin. Proc. nat. Acad. Sci. (Wash.) 73, 1897–1901 (1976)

    Google Scholar 

  • Finch, J.T., Noll, M., Kornberg, R.D.: Electron microscopy of defined lengths of chromatin. Proc. nat. Acad. Sci. (Wash.) 72, 3320–3322 (1975)

    Google Scholar 

  • Gall, J.G.: Chromosome fibers studied by a spreading technique. Chromosoma (Berl.) 20, 221–233 (1966)

    Google Scholar 

  • Griffith, J.D.: Chromatin structure: deduced from a minichromosome. Science 187, 1202–1203 (1975)

    Google Scholar 

  • Hozier, J., Renz, M., Nehls, P.: The chromosome fiber: evidence for an ordered superstructure of nuleolosomes. Chromosoma (Berl.) 62, 301–317 (1977)

    Google Scholar 

  • Itkes, A.V., Glotov, B.O., Nikolaev, L.G., Preem, S.R., Severin, E.S.: Repeating oligonucleosomal units. A new element of chromatin structure. Nucleic Acids Res. 8, 507–527 (1980)

    Google Scholar 

  • Jorcano, J.L., Meyer, G., Day, L.A., Renz, M.: Aggregation of small oligonucleosomal chains into 300-Å globular particles. Proc. nat. Acad. Sci. (Wash.) 77, 6443–6447 (1980)

    Google Scholar 

  • Loening, V.E.: The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide gel electrophoresis. Biochem. J. 102, 251–257 (1967)

    Google Scholar 

  • Noll, M., Thomas, J.O., Kornberg, R.D.: Preparation of native chromatin and damage caused by shearing. Science 187, 1203–1206 (1975)

    Google Scholar 

  • Olins, A.L., Carlson, R.D., Wright, E.B., Olins, D.E.: Chromatin ν bodies: isolation, subfractionation and physical characterization. Nucleic Acids Res. 3, 3271–3291 (1976)

    Google Scholar 

  • Pruitt, S.C., Grainger, R.M.: A repeating unit of higher order chromatin structure in chick red blood cell nuclei. Chromosoma (Berl.) 78, 257–274 (1980)

    Google Scholar 

  • Renz, M.: Heterogeneity of the chromosome fiber. Nucleic Acids Res. 6, 2761–2767 (1979)

    Google Scholar 

  • Renz, M., Nehls, P., Hozier, J.: Involvement of histone H1 in the organization of the chromosome fiber. Proc. nat. Acad. Sci. (Wash.) 74, 1879–1883 (1977)

    Google Scholar 

  • Ris, H., Kubai, D.F.: Chromosome structure. Ann. Rev. Genet. 4, 263–294 (1970)

    Google Scholar 

  • Stratling, W.H., Müller, U., Zentgraf, H.: The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp. Cell Res. 117, 301–311 (1978)

    Google Scholar 

  • Subirana, J.A., Muñoz-Guerra, S., Martínez, A.G., Pérez-Grau, L., Marcet, X., Fita, I.: The subunit structure of chromatin fibers. Chromosoma (Berl.) 83, 455–471 (1981)

    Google Scholar 

  • Thoma, F., Koller, Th., Klug, A.: Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979)

    Google Scholar 

  • Thomas, J.O., Kornberg, R.D.: The study of Histone-Histone associations by chemical cross-linking. In: Methods in cell biology (G. Stein, J. Stein and L.J. Kleinsmith, eds.), vol. XVIII, pp. 429–440. New York: Academic Press, 1978

    Google Scholar 

  • Zamenhoff, S.: Preparation and assay of deoxyribonucleic acid from animal tissue. In: Methods in enzymology (S.P. Colawick and N.O. Kaplan, eds.), vol. 3, pp. 696–704. New York: Academic Press 1957

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azorín, F., Pérez-Grau, L. & Subirana, J.A. Supranucleosomal organization of chromatin. Chromosoma 85, 251–260 (1982). https://doi.org/10.1007/BF00294969

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294969

Keywords

Navigation