Skip to main content
Log in

Effects of N-terminal deletions of the Escherichia coli protein Fis on growth rate, tRNA Ser2 expression and cell morphology

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The Escherichia coli Fis protein is known to be involved in a variety of processes, including the activation of stable RNA operons. In this paper we study the ability of a set of N-terminal Fis deletion mutants to stimulate transcription of the tRNA Ser2 gene. The results indicate that the domain of the Fis protein containing residues 1–26 is not required for transcription activation. The Fis mutants that are still active in transcription stimulation can also complement the reduced growth rates of Fis cells, suggesting that the same activating domain is involved in this phenomenon. In addition, we show that in fast growing cultures in the absence of an active Fis protein, minicells are formed. These minicells seem to arise from septum formation near the cell poles. Suppression of minicell formation by Fis also does not require the presence of the N-terminal domain of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball C, Johnson RC (1991a) Efficient excision of phage lambda from the Escherichia coli chromosome requires the Fis protein. J Bacteriol 173:4027–4031

    Google Scholar 

  • Ball C, Johnson RC (1991b) Multiple effects of Fis on integration and the control of lysogeny in phage lambda. J Bacteriol 173:4032–4038

    Google Scholar 

  • Bétermier M, Lefèvre V, Koch C, Alazard R, Chandler M (1989) The Escherichia coli protein Fis: specific binding to the ends of phage Mu DNA and modulation of phage growth. Mol Microbiol 3:459–468

    Google Scholar 

  • Bétermier M, Poquet I, Alazard R, Chandler M (1993) Involvement of Escherichia coli Fis protein in maintenance of bacteriophage Mu lysogeny by the repressor: control of early transcription and inhibition of transposition. J Bacteriol 175:3798–3811

    Google Scholar 

  • de Boer PAJ, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649

    Google Scholar 

  • Condon C, Phillips J, Fu Z-Y, Squires C, Squires CL (1992) Depletion of functional ribosomal RNA operons in Escherichia coli causes increased expression of the remaining intact copies. EMBO J 11:4175–4185

    Google Scholar 

  • van Drunen CM, van Zuylen C, Mientjes EJ, Goosen N, van de Putte P (1993) Inhibition of bacteriophage Mu transposition by Mu repressor and Fis. Mol Microbiol 10:293–298

    Google Scholar 

  • Emilsson V (1993) Transfer RNA regulation and bacterial growth. PhD thesis, Uppsala University, Sweden

    Google Scholar 

  • Emilsson V, Kurland CG (1990) Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J 9:4359–4366

    Google Scholar 

  • Filutowicz M, Ross W, Wild J, Gourse RL (1992) Involvement of Fis protein in replication of the Escherichia coli chromosome. J Bacteriol 174:398–407

    Google Scholar 

  • Gille H, Egan JB, Roth A, Messer W (1991) The Fis protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res 19:4167–4172

    Google Scholar 

  • Gosink KK, Ross W, Leirmo S, Osuna R, Finkel S, Johnson RC, Gourse RL (1993) DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1.J Bacteriol 175:1580–1589

    Google Scholar 

  • Haffter P, Bickle TA (1987) Purification and DNA-binding properties of Fis and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. J Mol Biol 198:579–587

    Google Scholar 

  • Hübner P, Arber W (1989) Mutational analysis of a prokaryotic recombinational enhancer element with two functions. EMBO J 8:577–585

    Google Scholar 

  • Jinks-Robertson S, Gourse RL, Nomura M (1983) Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell 33:865–876

    Google Scholar 

  • Jobling MG, Holmes RK (1990) Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res 18:5315–5316

    Google Scholar 

  • Johnson RC, Bruist M, Simon MI (1986) Host protein requirements for in vitro site-specific DNA inversion. Cell 46:531–539

    Google Scholar 

  • Johnson RC, Ball CA, Pfeffer D, Simon MI (1988) Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc Natl Acad Sci USA 85:3484–3488

    Google Scholar 

  • Kanaar R, van de Putte P, Cozzarelli NR (1986) Inversion of the G segment of phage Mu in vitro is stimulated by a host factor. Biochim Biophys Acta 866:170–177

    Google Scholar 

  • Kanaar R, van Hal JP, van de Putte P (1989) The recombinational enhancer for DNA inversion functions independent of its orientation as a consequence of dyad symmetry in the Fis-DNA complex. Nucleic Acids Res 17:6043–6053

    Google Scholar 

  • Koch C, Kahmann R (1986) Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. J Biol Chem 261:15673–15678

    Google Scholar 

  • Koch C, Ninnemann O, Fuss H, Kahmann R (1991) The N-terminal part of the E. coli DNA binding protein Fis is essential for stimulating site-specific DNA inversion but is not required for specific DNA binding. Nucleic Acids Res 19:5915–5922

    Google Scholar 

  • Kostrewa D, Granzin J, Koch C, Choe HW, Raghunathan S, Wolf W, Labahn J, Kahmann R, Saenger W (1991) Three-dimensional structure of the E. coli DNA-binding protein Fis. Nature 349:178–180

    Google Scholar 

  • Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492

    Google Scholar 

  • Lazarus LR, Travers AA (1993) The Escherichia coli Fis protein is not required for the activation of tyrT transcription on entry into exponential growth. EMBO J 12:2483–2494

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Nilsson L, Emilsson V (1994) Factor for inversion stimulation-dependent growth rate regulation of individual tRNA species in Escherichia coli. J Biol Chem 269:9460–9465

    Google Scholar 

  • Nilsson L, Vanet A, Vijgenboom E, Bosch L (1990) The role of Fis in trans-activation of stable RNA operons of E. coli. EMBO J 9:727–734

    Google Scholar 

  • Nilsson L, Verbeek H, Vijgenboom E, van Drunen C, Vanet A, Bosch L (1992a) Fis-dependent trans-activation of stable RNA operons of Escherichia coli under various growth conditions. J Bacteriol 174:921–929

    Google Scholar 

  • Nilsson L, Verbeek H, Hoffmann U, Haupt M, Bosch L (1992b) Inactivation of the fis gene leads to reduced growth rate. FEMS Microbiol Lett 99:85–88

    Google Scholar 

  • Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212:403–411

    Google Scholar 

  • Osuna R, Finkel SE, Johnson RC (1991) Identification of two functional regions in Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not λ excision. EMBO J 10:1593–1603

    Google Scholar 

  • Ross W, Thompson JF, Newlands JT, Gourse RL (1990) E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Google Scholar 

  • Spaeny-Dekking EHA, Goosen N, van de Putte P (1992) The role of the N-terminus of the Fis protein in different Fis-mediated processes. Mol Biol (Life Sci Adv) 11:91–104

    Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct the expression of cloned genes. Methods Enzymol 185:60–89

    Google Scholar 

  • Thompson JF, Landy A (1988) Empirical estimation of proteininduced DNA bending angles: application to λ site-specific recombination complexes. Nucleic Acids Res 16:9687–9705

    Google Scholar 

  • Thompson JF, de Vargas LM, Koch C, Kahmann R, Landy A (1987) Cellular factors couple recombination with growth phase: characterization of a new component in the λ site-specific recombination pathway. Cell 50:901–908

    Google Scholar 

  • Vind J, Sørensen MA, Rasmussen MD, Pedersen S (1993) Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomas. J Mol Biol 231:678–688

    Google Scholar 

  • Weinrech MD, Reznikoff WS (1992) Fis plays a role in Tn5 and IS50 transposition. J Bacteriol 174:4530–4537

    Google Scholar 

  • Yuan H, Finkel SE, Feng JA, Daczor-Grzeskowiak M, Johnson RC, Dickerson RE (1991) The molecular structure of wild type and a mutant Fis protein: relationship between mutational changes and recombinational enhancer function or DNA bending. Proc Natl Acad Sci USA 88:9558–9562

    Google Scholar 

  • Zacharias M, Göringer HU, Wagner R (1992) Analysis of the Fis-dependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA Pl promoter. Biochemistry 31:2621–2628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaeny-Dekking, L., Nilsson, L., von Euler, A. et al. Effects of N-terminal deletions of the Escherichia coli protein Fis on growth rate, tRNA Ser2 expression and cell morphology. Molec. Gen. Genet. 246, 259–265 (1995). https://doi.org/10.1007/BF00294690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294690

Key words

Navigation