Skip to main content
Log in

Adult pancreatic tissue fate after pancreatic fragment autotransplantation into the spleen of the pancreatectomized dog

  • Original Scientific Reports
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

As far as we know, after adult enzyme-digested pancreatic fragment autotransplantation, the fate of the inoculated pancreatic tissue has never been reported and the hypothetic engrafted islet mass growth by mitotic division or by a true islet neogenesis from ductular precursor cells has never been demonstrated. In dogs with total or near-total (90%) pancreatectomy that preserves the duodenum and the common bile duct, morphologic study of the pancreatic tissue inoculated into the spleen has demonstrated an exuberant ductular-acinar-islet regenerative process, with progressive cystic degeneration of the newly formed ductular-acinar structures occurring simultaneously with the selective survival and growing predominance of extraductal tissue scattered as distinct islets, clusters of islet cells, or single islet cells. In addition to the B, A2, and D cell types of the normal adult dog islet, we have also seen a peculiar ultrastructural pleomorphism of the insular B cells, frequently combined with their ductular or glandular arrangement in maturing islets. Rare or never before reported islet cell types in the adult dog's islets (G cells, mixed endocrine cells of the A2-D, D-B, and A2-B types, and mixed acinar-islet cells of the D-acinar type) were also putatively identified. Using light microscopy we have identified many mitotic figures on ductular and centroacinar cells in ductules and ductular-acinar structures. Moreover, we have ultrastructurally characterized a pluriendocrine nesidioblastic process identified in the most common islet cell types (B, A2, D) and in G cells and mixed acinar islet cells of the B-ac, A2-ac, D-ac, F-ac, and G-ac types as well as “intermediary” or “transitional” cells of incipient ductular-acinar, ductular-islet, and ductular-acinar-islet differentiation. The characteristics of the extraductal islet tissue and the exuberant nesidioblastic process have demonstrated neogenesis of islets and islet cells from precursor ductular cells at several points after the autotransplant, and we suggest that this mechanism may be of fundamental importance for the engrafted islet mass growth—keeping in mind the age of the pancreatic tissue donors and the life-span of the juvenile diabetic recipient receiving the transplant. This evolution has taken place simultaneously with the progressive rarefaction of the regenerated ductular-acinar structures definitively deprived of an intestinal drainage route by virtue of their heterotopic location.

Resumen

Hasta donde sabemos, después del autotrasplante de fragmentos pancreáticos enzimáticamente digeridos, no se ha reportado la evolución final del tejido pancreático inoculado; y el crecimiento de la hipotética masa del tejido insular trasplantado, por división mitótica a por verdadera neogénesis de islotes a partir de células ductales precursoras, nunca ha sido demostrado.

En el perro sometido a pancreatectomía total o casi total (90%) con preservación del duodeno y del colédoco, el estudio morfológico del tejido pancreático inoculado en el bazo ha demostrado un exuberante proceso regenerativo de células dactulares-acinares-insulares-, con progresiva degeneración quística de las neoformadas estructuras ductulares-acinares simultánea con la sobrevida selectiva y el crecimiento predominante del tejido insular a partir de ductos, y de células insulares aisladas o en grupos. Además de los tipos B, A2 y D de las células insulares del perro, también hemos podido identificar un peculiar pleomorfismo ultraestructural de las células insulares B, con frecuencia combinado con su ordenación ductular o glandular en los islotes en vía de maduración. También fueron putativamente identificados tipos celulares muy raros o nunca reportados en los islotes caninos (células G, células endocrinas mixtas de los tipos A2/D, D/B, Y A2/B, y células mixtas acinares e insulares del tipo D-acinar). En las estructuras ductulares y ductular-acinares hemos podido reconocer muchas figuras mitóticas en células ductulares y centroacinares mediante microscopia de luz y un proceso pluriendocrino nesidio-blástico con la identificación netraestructural de los tipos más comunes de células insulares (B, A2, D), pero también células G y células mixtas acinar-insulares de los tipos B-ac, A2-ac, D-ac, F-ac y G-ac, así como células “intermedias” o “transicionales” de la incipiente diferenciación ductular-acinar, ductular-insular, y ductular-acinar-insular. Las caracteristicas del tejido insular originado en ductos y el exuberante proceso nesidioblástico han demostrado la neogénesis de células insulares y de islotes a partir de células precursoras en diferentes períodos después del autotrasplante; nosotros sugerimos que este mecanismo puede ser de importancia fundamental para el crecimiento de la masa insular trasplantada, teniendo en cuenta la edad de los donantes de tejido pancreático y la duración de la vida de los recipientes diabéticos y juveniles. Esta evolución ha cursado con una progresiva rarefacción de las estructuras ductulares-acinares, definitivamente desprovista de una vía de drenaje intestinal debido a su ubicación heterotópica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray, D.W.R.: The role of exocrine tissue in pancreatic islet transplantation. Transplant. Int. 2:41, 1989

    Google Scholar 

  2. Marx, M., Schmidt, W., Herrmann, M., Goberna, R.: Electron microscopic studies on the existence of the so-called “acinar-islet cells” in the regenerating pancreas of the rat. Horm. Metab. Res. 2:204, 1970

    Google Scholar 

  3. Marx, M., Schmidt, W., Goberna, R.: Electron microscopic investigations on the islet regeneration in the rat after subtotal pancreatectomy. Z. Zellforsch. 110:569, 1970

    Google Scholar 

  4. Müller, R., Laucke, R., Trimper, B., Cossel, L.: Pancreatic cell proliferation in normal rats studied by in vivo autoradiography with H3-thymidine. Virchows Arch. B. Cell Pathol. 59:133, 1990

    Google Scholar 

  5. Fitzgerald, P.J.: The problem of the precursor cell of the regenerating acinar epithelium. Lab. Invest. 9:67, 1960

    Google Scholar 

  6. Adler, G., Hupp, T., Kern, H.F.: Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch. [Pathol. Anat.] 382:31, 1979

    Google Scholar 

  7. Herman, L., Fitzgerald, P.J.: Restitution of pancreatic acinar cells following ethionine. J. Cell Biol. 12:297, 1962

    Google Scholar 

  8. Boquist, L., Edström, C.: Ultrastructure of pancreatic acinar and islet parenchyma in rats at various intervals after duct ligation. Virchows Arch. [Pathol. Anat.] 349:69, 1970

    Google Scholar 

  9. Hulquist, G.T., Karlsson, U., Hallner, A.Ch.: The regenerative capacity of the pancreas in duct-ligated rats. Exp. Pathol. 17:44 1979

    Google Scholar 

  10. Hultquist, G.T., Thorell, J.: A method for isolating islets of Langerhans by transplantation. Acta Soc. Med. Ups. 69:291, 1964

    Google Scholar 

  11. Hultquist, G.T.: The ultrastructure of pancreatic tissue from ductligated rats implanted into anterior chamber of rat eyes. Ups. J. Med. Sci. 77:8, 1972

    Google Scholar 

  12. Kyrle, J. Von: Uber die Regenerationsvorgänge imtierischen Pankreas (eine experimentell-pathologische Studie). Arch. Mikr. Anat. 72:141, 1908

    Google Scholar 

  13. Rosenberg, L., Dafoe, D., Turcotte, J.: Enhancing hamster pancreatic islet isolation by induction of nesidioblastosis. Transplant. Proc. 19:907, 1987

    Google Scholar 

  14. Moorehouse, J.A., Grahame, G.R., Rosen, N.J.: Relationship between intravenous glucose tolerance and the fasting blood glucose level in healthy and diabetic subjects. J. Clin. Endocrinol. 24:145, 1964

    Google Scholar 

  15. Herbert, V., Lau, K.S., Gottlieb, C.W., Bleicher, S.J.: Coated charcoal immunoassay of insulin. J. Clin. Endocrinol. 25:1375, 1965

    Google Scholar 

  16. Yasugi, H., Mizumoto, R., Sakurai, H., Honjo, I.: Changes in carbohydrate metabolism and endocrine function of remnant pancreas after major pancreatic resection. Am. J. Surg. 132:577, 1976

    Google Scholar 

  17. Greider, M.H., Gersell, D.J., Gingerich, R.L.: Ultrastructural localization of pancreatic polypeptide in the F cell of the dog pancreas. J. Histochem. Cytochem. 26:1103, 1978

    Google Scholar 

  18. Madureira, M., Adolfo, A., Dias, J., Sebe, M., Carvalhais, H.A., von Hafe, P.: Reinnervation of the endocrine pancreas after autotransplantation of pancreatic fragments in the spleen of the dog: a morphofunctional study. World J. Surg. 9:335, 1985

    Google Scholar 

  19. Donáth, T., Adeghate, E.: Light and electron microscopy of postnatal pancreatic tissue implants in the anterior eye-chamber of CRF rats. Z. Mikrosk. Anat. Forsch. 102(3S):512, 1988

    Google Scholar 

  20. Lazarow, A., Wells, L.J., Carpenter, A-M., Hegre, O.D., Leonard, R.J., McEvoy, R.C.: Islet differentiation, organ culture, and transplantation. Diabetes 22:877, 1973

    Google Scholar 

  21. Huss, G.K., Sachs, H., Reynolds, W.A.: Viability of primate pancreatic fragments and islets in vitro. Anat. Rec. 184:433, 1976

    Google Scholar 

  22. Like, A.A., Orci, L.: Embryogenesis of the human pancreatic islets: a light and electron microscopic study. Diabetes 21(Suppl. 2):511, 1972

    Google Scholar 

  23. Pictet, R.L., Rutter, W.J.: Development of the embryonic endocrine pancreas. In Handbook of Physiology. Sect. 7. Endocrinology. Vol. I. Endocrine Pancreas. Baltimore, Williams & Wilkins, 1972, pp. 25–66

    Google Scholar 

  24. Dudek, R.W., Freinkel, N., Lewis, N.J., Hellerström, C., Johnson, R.C.: Morphologic study of cultured pancreatic fetal islets during maturation of the insulin stimulus-secretion mechanism. Diabetes 29:15, 1980

    Google Scholar 

  25. Track, N.S., Creutzfeldt, C., Bokermann, M.: Enzymatic functional and ultrastructural development of the exocrine pancreas. II. The human pancreas. Comp. Biochem. Physiol. [A] 51:95, 1975

    Google Scholar 

  26. Parsa, I., Marsh, W.H., Fitzgerald, P.J.: Pancreas acinar cell differentiation. I. Morphologic and enzymatic comparisons of embryonic rat pancreas and pancreatic anlage in organ culture. Am. J. Pathol. 57:457, 1969

    Google Scholar 

  27. Boquist, L.: Fine structure of the endocrine pancreas in newborn rodents. Diabetes 21:1051, 1972

    Google Scholar 

  28. Boquist, L., Falkmer, S.: The significance of agranular and cliated islets cells. In The Structure and Metabolism of the Pancreatic Islets, (Vol. 16). S. Falkmer, B. Hellman, I-B. Täljedal, editors. Oxford, Pergamon Press, 1970, pp. 25–35

    Google Scholar 

  29. Boquist, L.: Alloxan administration in the Chinese hamster. II. Ultrastructural study of degeneration and subsequent regeneration of the pancreatic islet tissue. Virchows Arch. Zellpathol. 1:169, 1968

    Google Scholar 

  30. Von Cossel, L.: Intermediate cells in pancreas and cellular transformation. Zentralbl. Allg. Pathol. Anat. 133:503, 1987

    Google Scholar 

  31. Le Douarin, N.M.: On the origin of pancreatic endocrine cells [minireview]. Cell 53:169, 1988

    Google Scholar 

  32. Pictet, R.L., Rall, L.B., Phelps, P., Rutter, W.J.: The neural crest and the origin of the insulin producing and other gastrointestinal hormone-producing cells. Science 191:191, 1976

    Google Scholar 

  33. Alpert, S., Hanahan, D., Teitelman, G.: Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53:295, 1988

    Google Scholar 

  34. Björkman, N., Hellerström, C., Hellman, B., Petersson, B.: The cell-types in the endocrine pancreas of the human fetus. Z. Zellforsch. 72:425, 1966

    Google Scholar 

  35. Larsson, L.I., Rehfeld, J.F., Sundler, F., Hakånson, R.: Pancreatic gastrin in foetal and neonatal rats. Nature 262:609, 1976

    Google Scholar 

  36. Churg, A., Richter, W.R.: Early changes in the exocrine pancreas of the dog and rat after ligation of the pancreatic duct: a light and electron microscopic study. Am. J. Pathol. 63:521, 1971

    Google Scholar 

  37. Pound, A.W., Walker, N.I.: Involution of the pancreas after ligation of the pancreatic ducts. A histological study. Br. J. Exp. Pathol. 62:547, 1981

    Google Scholar 

  38. Zeligs, J.D., Janoff, A., Dumont, A.E.: The course and nature of acinar cell death following pancreatic ligation in the guinea pig. Am. J. Pathol. 80:203, 1975

    Google Scholar 

  39. Churg, A., Richter, W.R.: Histochemical distribution of carbonic anhydrase after ligation of the pancreatic duct. Am. J. Pathol. 68:23, 1972

    Google Scholar 

  40. Motojima, K., Kohara, N., Maeda, J., Yamaguchi, M., Kanematsu, T.: A comparison of endocrine and exocrine function after pancreatic fragment autotransplantation into splenic pulp, portal vein, and hepatic parenchyma. Transplantation 53:527, 1992

    Google Scholar 

  41. Hadji-Georgopoulos, A., Broe, P., Mehigan, D., Kowarski, A., Cameron, J.L.: Endocrine and exocrine function of intrasplenic pancreatic autografts. Surgery 91:210, 1982

    Google Scholar 

  42. Gooszen, H.G., Bosman, F.T., van Schilfgaarde, R.: The effect of duct obliteration on the histology and endocrine function of the canine pancreas. Transplantation 38:13, 1984

    Google Scholar 

  43. Griffin, S.M., Alderson, D., Farndon, J.R.: Long-term metabolic follow-up with different preparations of islet autografts. Diabetes 38(Suppl.1):305, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madureira, M.L.C. Adult pancreatic tissue fate after pancreatic fragment autotransplantation into the spleen of the pancreatectomized dog. World J. Surg. 18, 259–265 (1994). https://doi.org/10.1007/BF00294411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294411

Keywords

Navigation