Skip to main content
Log in

Isolation and characterisation of genes for sulphate activation and reduction in Aspergillus nidulans: implications for evolution of an allosteric control region by gene duplication

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A region of the Aspergillus nidulans genome carrying the sA and sC genes, encoding PAPS reductase and ATP sulphurylase, respectively, was isolated by transformation of an sA mutant with a cosmid library. The genes were subcloned and their functions confirmed by retransformation and complementation of A. nidulans strains carrying sA and sC mutations. The physical distance of 2 kb between the genes corresponds to a genetic distance of 1 cM. While the deduced amino acid sequence of the sA gene product shows homology with the equivalent MET16 gene product of Saccharomyces cerevisiae, the sC gene product resembles the equivalent MET3 yeast gene product at the N-terminal end, but differs markedly from it at the C-terminal end, showing homology to the APS kinases of several microorganisms. It is proposed that this C-terminal region does not encode a functional APS kinase, but is responsible for allosteric regulation by PAPS of the sulphate assimilation pathway in A. nidulans, and that the ATP sulphurylase encoding-gene (sC) of filamentous ascomycetes may have evolved from a bifunctional gene similar to the nodQ gene of Rhizobium meliloti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitt S, McCullough W, Roberts CF (1976) Analysis of acetate non-utilizing mutants in Aspergillus nidulans. J Gen Microbiol 92:263–282

    Google Scholar 

  • Arst HN Jr (1968) Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature 219:268–270

    Google Scholar 

  • Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112:284–289

    Google Scholar 

  • Ballance DJ, Turner G (1985) Development of a high frequency transforming vector for Aspergillus nidulans. Gene 36:321–331

    Google Scholar 

  • Ballance DJ, Turner G (1986) Gene cloning in Aspergillus nidulans: isolation of the isocitrate lyase gene (acuD). Mol Gen Genet 202:271–275

    Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1989) Cloning of a new bidirectionally selectable marker for Aspergillus strains. Gene 84:329–334

    Google Scholar 

  • Buxton FP, Radford A (1983) Cloning of the structural gene for orotidine-5′-phosphate carboxylase of Neurospora crassa by expression in Escherichia coli. Molec Gen Genet 190:403–405

    Google Scholar 

  • Cervantes E, Sharma SB, Maillet F, Vasse J, Truchet G, Rosenberg C (1989) The Rhizobium meliloti host range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors. Mol Microbiol 3:745–755

    Google Scholar 

  • Cherest H, Kerjan P, Surdin-Kerjan Y (1987) The Saccharomyces cerevisiae MET3 gene: nucleotide sequence and relationship of the 5′ non-coding region to that of MET25. Mol Gen Genet 210:307–313

    Google Scholar 

  • Clarke L, Carbon C (1976) A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    Google Scholar 

  • Clutterbuck AJ (1984) Loci and linkage map of the filamentous fungus Aspergillus nidulans (Eidam) Winter (n=8). In: O'Brien SJ (ed) Genetic maps 1984. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 265–273

    Google Scholar 

  • Cullen D, Wilson LJ, Grey GL, Henner DJ, Turner G, Ballance DJ (1987) Sequence and centromere proximal location of a transformation enhancing fragment ans1 from Aspergillus nidulans. Nucleic Acids Res 15:9163–9175

    Google Scholar 

  • Foster BA, Thomas SM, Mahr JA, Renosto F, Patel HC, Segel IH (1994) Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum. J Biol Chem 269:19777–19786

    Google Scholar 

  • Gent ME, Crowley P, Ludwig JR, Anwar R, Sugden DA, Sims PFG, Oliver SG (1985) An E. coli-yeast shuttle cosmid with positive selection for inserted fragments. Curr Genet 10:29–33

    Google Scholar 

  • Gravel RA, Käfer E, Niklewicz-Borkenhagen A, Zambryski P (1970) Genetic and accumulation studies in sulfite-requiring mutants of Aspergillus nidulans. Can J Genet Cytol 12:831–840

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Google Scholar 

  • Hockenhull DJD (1949) The sulphur metabolism of mould fungi: the use of “biochemical mutant” strains of Aspergillus nidulans in elucidating the biosynthesis of cysteine. Biochim Biophys Acta 3:326–335

    Google Scholar 

  • Hussey C, Orsi BA, Scott J, Spencer B (1965) Mechanism of choline sulphate utilization in fungi. Nature 207:632–634

    Google Scholar 

  • Kafer E (1958) An 8-chromosome map of Aspergillus nidulans. Adv Genet 9:105–145

    Google Scholar 

  • Korch C, Mountain HA, Bystrom AS (1991) Cloning, nucleotide sequence and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae. Mol Gen Genet 229:96–108

    Google Scholar 

  • Leyh TS, Vogt TF, Suo Y (1992) The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J Bacteriol 267:10405–10410

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Martin RL, Daley LA, Zdravko L, Wailes LM, Renosto F, Segel IH (1989) The “regulatory” sulfhydryl group of Penicillium chrysogenum ATP sulfurylase. J Biol Chem 264:11768–11775

    Google Scholar 

  • Marzluf GA (1993) Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol 47:31–55

    Google Scholar 

  • Mountain HA, Bystrom AS, Korch C (1993) The general amino acid control regulates MET4, which encodes a methionine pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mol Microbiol 7:215–228

    Google Scholar 

  • Natorff R, Balinska M, Paszewski A (1993) At least 4 regulatory genes control sulfur metabolite repression in Aspergillus nidulans. Mol Gen Genet 238:185–192

    Google Scholar 

  • Renosto F, Seubert PA, Segel IH (1984) Adenosine 5′-phosphosulphate kinase from Penicillium chrysogenum. Purification and characterization. J Biol Chem 259:2113–2123

    Google Scholar 

  • Renosto F, Martin RL, Wailes LM, Daley LA, Segel IH (1990) Regulation of inorganic sulphate activation in filamentous fungi. J Biol Chem 265:10300–10308

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schiff JA, Saidha T (1987) Overview: inorganic sulphur and sulphate reduction. Methods Enzymol 143:329–334

    Google Scholar 

  • Schwedock J, Long SR (1990) ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 348:644–647

    Google Scholar 

  • Schwedock JS, Long SR (1992) Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. Genetics 132:899–909

    Google Scholar 

  • Segel IH, Johnson MJ (1961) Accumulation of intracellular inorganic sulphate by Penicillium chrysogenum. J Bacteriol 81:91–98

    Google Scholar 

  • Segel IH, Renosto F, Seuber PA (1987) Sulfate-activating enzymes. Methods Enzymol 143:334–349

    Google Scholar 

  • Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216:492–497

    Google Scholar 

  • Spencer B, Hussey EC, Orsi BA, Scott J (1968) Mechanism of choline-O-sulphate utilization in fungi. Biochem J 106:461–469

    Google Scholar 

  • Tardew PL, Johnson MJ (1958) Sulphate utilisation by penicillin producing mutants of Penicillium chrysogenum. J Bacteriol 76:400–405

    Google Scholar 

  • Thomas D, Barbey R, Surdin-Kerjan Y (1990) Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. J Biol Chem 265:15518–15524

    Google Scholar 

  • Thomas D, Jacquemin I, Surdin-Kerjan Y (1992) MET4, a leucine zipper protein, and cent romere-binding factor I are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol 12:1719–1727

    Google Scholar 

  • Timberlake WE, Boylan MT, Cooley MB, Mirabito PM, O'Hara EB, Willett CE (1985) Rapid identification of mutation-complementing restriction fragments from Aspergillus nidulans cosmids. Exp Mycol 9:351–355

    Google Scholar 

  • Turner G, Borges MI, Bailey AM, Lehmbeck J, Clausen IG (1994) An unusual structure for the ATP sulphurylase genes sC of A. nidulans and P. chrysogenum. Poster presentation, 2nd European Conference on Fungal Genetics, Lunteren, April 1994

  • Tweedie JW, Segel IH (1971) Adenosine triphosphate sulfurylase from Penicillium chrysogenum. J Biol Chem 246:2483–2466

    Google Scholar 

  • Vieille C, Elmerich C (1990) Characterisation of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nodPQ. Mol Plant-Microb Interact 3:389–400

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha subunits and beta subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ines Borges-Walmsley, M., Turner, G., Bailey, A.M. et al. Isolation and characterisation of genes for sulphate activation and reduction in Aspergillus nidulans: implications for evolution of an allosteric control region by gene duplication. Molec. Gen. Genet. 247, 423–429 (1995). https://doi.org/10.1007/BF00293143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293143

Key words

Navigation