Skip to main content
Log in

Studies on lambda virulent mutants

II. Anti-repression and vir-repression function of λvirC and λvirCvirR

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The clearish plaque mutants λvirC which were isolated from λ true-virulent, λvirLvirCvirR (λvirLCR), do not complement CI mutants but CII, CIII and λ mutant (λc 42) for lysogenization. No complementation for lysogenization was observed between λvirCR and any CI, CII, CIII or y mutants. No lysogen was obtained when λvirC or λvirC carrying susN, susO or susP was infected to λ-sensitive sup - host. This was also true for λvirCR. Infection of λind - lysogen with λvirCRsusNO(P) or λvirCsusNO(P) results in marked prophage induction. Effect of λvirCRsusNO(P) on prophage induction is stronger than that of λvirCsusNO(P). These results suggest the existence of gene(s) for anti-repressor. When λvirCsusNO(P) or λvirCRsusNO(P) was infected to W3350 sup - at high m.o.i., lysogen in anti-immune state and that in weak-immune state was obtained, respetively. Wild type λ phage forms clear plaque on λvirCsusNO(P) lysogen with e.o.p. of one and no plaque on λvirCRsusNO(P) lysogen. T4rII can plate on both lysogens. This weak-immunity caused by λvirCRsusNO(P) prophage is different from CI immunity and not abolished by irradiation of ultraviolet light (hereafter this is referred to as the vir-immunity). Action of anti-immunity and vir-immunity are almost λ specific. Possible functional sites for anti-and vir-immunity substances are suggested to be virL and virR regions. A hypothesis was presented that the vir-immunity may caused by the overproduced anti-immunity substance coded from x region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleyard, R. K.: Segregation of lambda lysogenicity during bacterial recombination in Escherichia coli K12. Genetics 39, 424–439 (1954).

    Google Scholar 

  • Benzer, S.: On the topography of the genetic fine structure. Proc. nat. Acad. Sci. (Wash.) 47, 403–415 (1961).

    Google Scholar 

  • Calef, E., Avitabile, A., del Giudice, L., Marchelli, C., Menna, T., Nerbauer, Z., Soller, A.: The genetics of the anti-immune phenotype of defective lambda lysogens, “The bacteriophage Lambda”. Cold Spr. Harb. Laboratory 609–620 (1972).

  • Campbell, A.: Sensitive mutants of bacteriophage λ. Virology 14, 22–32 (1961).

    Google Scholar 

  • Castellazzi, M., Brachet, P., Eisen, H.: Isolation and characterization of deletions in bacteriophage λ residing as prophage in E. coli K12. Molec. gen. Genet. 117, 211–218 (1972).

    Google Scholar 

  • Eisen, H., Brachet, P., Pereira da Silva, L., Jacob, F.: Regulation of repressor expression in λ. Proc. nat. Acad. Sci. (Wash.) 66, 855–862 (1970).

    Google Scholar 

  • Eisen, H., Fuerst, C. R., Siminovitch, L., Thomas, R., Lambert, L., Pereira da Silva, L., Jacob, F.: Genetics and physiology of defective lysogeny in K12(λ): Studies of early mutants. Virology 30, 224–241 (1966).

    Google Scholar 

  • Eshima, N., Fujii, S., Murotsu, T., Horiuchi, T.: Lambda phage mutants insensitive to temperature-sensitive repressor. III. Effects of virL, virR or virC mutation on the gene expression. Molec. gen. Genet. 116, 84–87 (1972).

    Google Scholar 

  • Franklin, N. C.: The N operon of lambda: Extent and regulation as observed in fusions to the tryptophan operon of Escherichia coli. “The bacteriophage Lambda.” Cold Spr. Harb. Laboratory 621–638 (1971).

  • Fujii, S., Horiuchi, T.: Studies on lambda virulent mutants. I. Isolation and characterization of revertants from λvirC mutant. Molec. gen. Genet. 11, 1–8 (1972).

    Google Scholar 

  • Hayes, W.: The mechanism of genetic recombination in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 18, 75–85 (1953).

    Google Scholar 

  • Heinemann, S. F., Spiegelman, W. G.: Control of transcription of the repressor gene in bacteriophage lambda. Proc. nat. Acad. Sci. (Wash.) 67, 1122–1129 (1970).

    Google Scholar 

  • Hirota, Y.: The effect of acridine dyes on mating type factors in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 46, 57–64 (1960).

    Google Scholar 

  • Horiuchi, T., Koga, H., Inokuchi, H., Tomizawa, J.: Lambda phage mutants insensitive to temperature-sensitive repressor. I. Isolation and genetic analysis of weak-virulent mutants. Molec. gen. Genet. 104, 51–58 (1969).

    Google Scholar 

  • Howard, B. D.: Phage lambda mutants deficient in rII exclusion. Science 158, 1588–1589 (1967).

    Google Scholar 

  • Jacob, F., Campbell, A.: Sur le systèm de repression assurant l'immunitè chez les bactéries lysogènes. C. R. Acad. Sci. (Paris) 248, 3219–3221 (1959).

    Google Scholar 

  • Jacob, F., Wollman, E. L.: Étude génétique d'un bactériophage tempéré d'Escherichia coli I. Le systéme génétique du bactériphage λ. Ann. Inst. Pasteur 87, 653–673 (1954).

    Google Scholar 

  • Jacob, F., Wollman, E. L.: Sexuality and the genetics of bacteria. New York: Academic Press 1961.

    Google Scholar 

  • Kaiser, A. D.: Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3, 43–61 (1957).

    Google Scholar 

  • Kaiser, A. D., Jacob, F.: Recombination between related temperate bacteriophages and its genetic control of immunity and prophage location. Virology 4, 509–521 (1957).

    Google Scholar 

  • Koga, H., Horiuchi, T.: A new repressor produced by λCIvirCR mutant. Jap. J. Genet. 46, 285–288 (1971).

    Google Scholar 

  • Koga, H., Miyauchi, T., Horiuchi, T.: Lambda phage mutants insensitive to temperaturesensitive repressor. II. Genetic character of λvirC mutant. Molec. gen. Genet. 106, 114–122 (1970).

    Google Scholar 

  • Kumar, S., Calef, E., Szybalski, W.: Regulation of the transcription of Escherichia coli phage λ by its early gene N and tof. Cold Spr. Harb. Symp. quant. Biol. 35, 331–339 (1970).

    Google Scholar 

  • Lieb, M.: λ mutants which persist as plasmid. J. Virol. 6, 218–225 (1970).

    Google Scholar 

  • Lieb, M.: Lysogenization by λ lacking repressor and N function. “The bacteriophage Lambda”. Cold Spr. Harb. Laboratory 679–690 (1971).

  • Liedke-Kulke, M., Kaiser, A. D.: Genetic control of prophage insertion specificity in bacteriophage λ and 21. Viology 32, 465–474 (1967).

    Google Scholar 

  • Matsubara, K., Kaiser, A. D.: λdv: an autonomously replicating DNA fragment. Cold Spr. Harb. Symp. quant. Biol. 33, 769–775 (1968).

    Google Scholar 

  • Matsushro, A.: Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage Φ80. Virology 19, 475–482 (1963).

    Google Scholar 

  • Murotsu, T., Horiuchi, T.: Prophage induction by the product of x region of superinfected λ operator-mutants. Jap. J. Genet. 46, 365–368 (1971).

    Google Scholar 

  • Neubauer, Z., Calef, E.: Immunity phase-shift in defective lysogens: Non-mutational hereditary change of early regulation of λ prophage. J. molec. Biol. 51, 1–13 (1970).

    Google Scholar 

  • Oppenheim, A. B., Neubauer, Z., Calef, E.: The antirepressor: a new element in the regulation of protein synthesis. Nature (Lond.) 226, 31–32 (1970).

    Google Scholar 

  • Packman, S., Sly, W. S.: Constitutive λ DNA replication by λc 17, a regulatory mutant related to virulence. Virology 34, 778–789 (1968).

    Google Scholar 

  • Pereira da Silva, L., Jacob, F.: Étude génétique d'une mutation modifiant la sensibilité a l'immunité chez le bacteriophage lambda. Ann. Inst. Pasteur 115, 145–158 (1968).

    Google Scholar 

  • Pero, J.: Location of the phage λ gene responsible for turning off λ-exonuclease synthesis. Virology 40, 65–71 (1970).

    Google Scholar 

  • Pero, J.: Deletion mapping of the site of action of the tof gene product. “The bacteriophage Lambda”. Cold Spr. Harb. Laboratory 599–608 (1971).

  • Sakakibara, Y., Koga, H., Horiuchi, T.: Transcription and replication of lambda bacteriophage virulent derivatives. Virology 47, 354–359 (1972).

    Google Scholar 

  • Sakakibara, Y., Tomizawa, J.: Regulation of transcription of lambda bacteriophage operator mutants. Virology 44, 463–472 (1971).

    Google Scholar 

  • Signer, E. R.: Plasmid formation: a new mode of lysogeny by phage λ. Nature (Lond.) 223, 158–160 (1969).

    Google Scholar 

  • Sly, W. S., Rabideau, K.: Mechanism of λc 17cI virulence. J. molec. Biol. 42, 385–400 (1969).

    Google Scholar 

  • Sly, W. S., Rabideau, K., Kolber, A.: The mechanism of lambda virulence II: Regulatory mutations in classical virulence. “The bacteriophage Lambda”. Cold Spr. Harb. Laboratory 575–588 (1971).

  • Spiegelman, W. G.: Two states of expression of genes CI, rex and N in lambda. Virology 43, 16–33 (1971).

    Google Scholar 

  • Thomas, R., Bertani, L.: On the control of the replication of temperate bacteriophages superinfecting immune hosts. Virology 24, 241–253 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Ozeki

This material has been published as an abstract in Jap. J. Genetics 45, 479 (1970).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, H., Horiuchi, T. Studies on lambda virulent mutants. Molec. Gen. Genet. 124, 219–232 (1973). https://doi.org/10.1007/BF00293093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293093

Keywords

Navigation