, Volume 58, Issue 4, pp 307–324 | Cite as

Reverse fluorescent chromosome banding with chromomycin and DAPI

  • Dieter Schweizer


Two DNA binding guanine-specific antibiotics, chromomycin A3 (CMA) and the closely related mithramycin (MM), were used as chromosome fluorescent dyes. Root-tip metaphase chromosomes of three plant species and human metaphase chromosomes were sequentially stained with CMA or MM and the DNA binding AT-specific fluorochrome 4′-6-diamidino-2-phenylindole (DAPI). In some cases a non-fluorescent counterstain was used as contrasting agent: methyl green in conjunction with CMA, and actinomycin D (AMD) in combination with DAPI. — In all three plant species, Vicia faba, Scilla siberica, and Ornithogalum caudatum, the nucleolus organiser regions and/or associated heterochromatin displayed very bright fluorescence with CMA and MM and, in general, heterochromatic segments (C-bands) which were bright with CMA and MM were pale with DAPI whereas segments which were dim with CMA and MM displayed very bright fluorescence with DAPI. — Human metaphase chromosomes showed a small longitudinal differentiation in CMA fluorescence, which was essentially the reverse of the banding pattern obtained with AMD/DAPI double-staining, but of lower contrast. The CMA-banding pattern appears to be similar to the pattern found by R-banding procedures.


DAPI Actinomycin Metaphase Chromosome Chromosome Banding Nucleolus Organiser Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behr, W., Honikel, K., Hartmann, G.: Interaction of the RNA polymerase inhibitor chromomycin with DNA. Eur. J. Biochem. 9, 82–92 (1969)Google Scholar
  2. Capesius, I., Bierweiler, B., Bachmann, K., Rücker, W., Nagl, W.: An A+T-rich satellite DNA in a monocotyledonous plant, Cymbidium. Biochim. biophys. Acta (Amst.) 395, 67–73 (1975)Google Scholar
  3. Caspersson, T., Zech, L., Johansson, C., Modest, E.J.: Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma (Berl.) 30, 215–227 (1970)Google Scholar
  4. Caspersson, T., Zech, L., Modest, E.J., Foley, G.E., Wagh, U., Simonsson, E.: Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp. Cell Res. 58, 128–140 (1969a)Google Scholar
  5. Caspersson, T., Zech, L., Modest, E.J., Foley, G.E., Wagh, U., Simonsson, E.: DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Exp. Cell Res. 58, 141–152 (1969b)Google Scholar
  6. Comings, D.E.: Mechanisms of chromosome banding. VIII. Hoechst 33258-DNA interaction. Chromosoma (Berl.) 52, 229–243 (1975)Google Scholar
  7. Comings, D.E., Drets, M.E.: Mechanisms of chromosome banding. IX. Are variations in DNA base composition adequate to account for quinacrine, Hoechst 33258 and daunomycin banding? Chromosoma (Berl.) 56, 199–211 (1976)Google Scholar
  8. Comings, D.E., Wyandt, H.E.: Reverse banding of Japanese qail microchromosomes. Exp. Cell Res. 99, 183–185 (1976)Google Scholar
  9. Comings, D.E., Kovacs, B.W., Avelino, E., Harris, D.C.: Mechanisms of chromosome banding. V. Quinacrine banding. Chromosoma (Berl.) 50, 111–145 (1975)Google Scholar
  10. Crissman, H.A., Tobey, R.A.: Cell-cycle analysis in 20 minutes. Science 184, 1297–1298 (1974)Google Scholar
  11. Dann, O., Bergen, G., Demant, E., Volz, G.: Trypanocide Diamidine des 2-Phenyl-benzofurans, 2-Phenyl-indens und 2-Phenyl-indols. Liebigs Ann. Chem. 749, 68–89 (1971)Google Scholar
  12. Distèche, C., Bontemps, J.: Chromosome regions containing DNAs of known base composition, specifically evidenced by 2,7-di-t-butyl proflavine. Comparison with the Q-banding and relation to dye-DNA interactions. Chromosoma (Berl.) 47, 263–281 (1974)Google Scholar
  13. Dutrillaux, B., Lejeune, J.: Sur une nouvelle technique d'analyse du caryotype humain. C.R. Acad. Sci. (Paris) 272, série D, 2638–2640 (1971)Google Scholar
  14. Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., Waring, M.J.: The molecular basis of antibiotic action. London: John Wiley and Sons 1972Google Scholar
  15. Goldberg, I.H., Friedman, P.A.: Antibiotics and nucleic acids. Ann. Rev. Biochem. 40, 775–810 (1971)Google Scholar
  16. Golomb, H.M., Bahr, G.F.: Correlation of the fluorescent banding pattern and ultrastructure of a human chromosome. Exp. Cell Res. 84, 121–126 (1974)Google Scholar
  17. Gosden, J.R., Mitchell, A.R., Buckland, R.A., Clayton, R.P., Evans, H.J.: The location of four human satellite DNAs on human chromosomes. Exp. Cell Res. 92, 148–158 (1975)Google Scholar
  18. Greilhuber, J.: Heterogeneity of heterochromatin in plants: comparison of Hy- and C-bands in Vicia faba. Plant Syst. Evol. 124, 139–156 (1975)Google Scholar
  19. Hajduk, S.L.: Demonstration of kinetoplast DNA in dyskinetoplastic strains of Trypanosoma equiperdum. Science 191, 858–859 (1976)Google Scholar
  20. Hecht, F., Wyandt, H.E., Magenis, R.E.H.: The human cell nucleus: quinacrine and other differential stains in the study of chromatin and chromosomes. In: The cell nucleus, Vol. 2 (H. Busch, ed.), pp. 33–121. New York and London: Academic Press 1974Google Scholar
  21. Hilwig, I, Gropp, A.: Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res. 75, 122–126 (1972)Google Scholar
  22. Holmquist, G.: Hoechst 33258 fluorescent staining of Drosophila chromosomes. Chromosoma (Berl.) 49, 333–356 (1975a)Google Scholar
  23. Holmquist, G.: Organisation and evolution of Drosophila virilis heterochromatin. Nature (Lond.) 257, 503–506 (1975b)Google Scholar
  24. Hsu, T.C.: Longitudinal differentiation of chromosomes. Ann. Rev. Genet. 7, 153–176 (1973)Google Scholar
  25. Hsu, T.C., Arrighi, F.E., Saunders, G.F.: Compositional heterogeneity of human heterochromatin. Proc. nat. Acad. Sci. (Wash.) 69, 1464–1466 (1972)Google Scholar
  26. Ingle, J., Pearson, G.G., Sinclair, J.: Species distribution and properties of nuclear satellite DNA in higher plants. Nature (Lond.) New Biol. 242, 193–197 (1973)Google Scholar
  27. Ingle, J., Timmis, J.N., Sinclair, J.: The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiol. 55, 496–501 (1975)Google Scholar
  28. Jones, K.W., Purdom, I.F., Prosser, J., Corneo, G.: The chromosomal localisation of human satellite DNA I. Chromosoma (Berl.) 49, 161–171 (1974)Google Scholar
  29. Latt, S.A.: Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)Google Scholar
  30. Latt, S.A., Wohlleb, J.C.: Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma (Berl.) 52, 297–316 (1975)Google Scholar
  31. Latt, S.A., Brodie, S., Munroe, S.H.: Optical studies of complexes of quinacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations. Chromosoma (Berl.) 49, 17–40 (1974)Google Scholar
  32. Lima-de-Faria, A., Pero, R., Avanzi, S., Durante, M., Ståhle, U., D'Amato, F., Granström, H.: Relation between ribosomal RNA genes and the DNA satellites of Phaseolus coccineus. Hereditas (Lund.) 79, 5–20 (1975)Google Scholar
  33. Lin, C.C., van de Sande, J.H.: Differential fluorescent staining of human chromosomes with daunomycin and adriamycin — the D-bands. Science 190, 61–63 (1975)Google Scholar
  34. Marks, G.E.: The Giemsa-staining centromeres of Nigella damascena. J. Cell Sci. 18, 19–25 (1975)Google Scholar
  35. McKay, R.D.G.: Chromosome condensation and differential staining. Chromosomes today 5, 217–225 (1976)Google Scholar
  36. Miller, O.J., Schreck, R.R., Beiser, S.M., Erlanger, B.F.: Immunofluorescent studies of chromosome banding with anti-nucleoside antibodies. In: Chromosome identification — technique and applications in biology and medicine (T. Caspersson and L. Zech, eds.), Nobel Symp. 23, pp. 43–48. New York: Academic Press 1973Google Scholar
  37. Modest, E.J., Sengupta, S.K.: Chemical correlates of chromosome banding. In: Chromosome identification—technique and applications in biology and medicine (T. Caspersson and L. Zech, eds.), Nobel Symp. 23, pp. 327–334. New York: Academic Press 1973Google Scholar
  38. Müller, W., Crothers, D.M., Waring, M.J.: A non-intercalating proflavine derivative. Eur. J. Biochem. 39, 223–234 (1973)Google Scholar
  39. Müller, W., Gautier, F.: Interactions of heteroaromatic compounds with nucleic acids. A·T-specific non-intercalating DNA ligands. Eur. J. Biochem. 54, 385–394 (1975)Google Scholar
  40. Raposa, T., Natarajan, A.T.: Fluorescence banding pattern of human and mouse chromosomes with a benzimidazol derivative (Hoechst 33258). Humangenetik 21, 221–226 (1974)Google Scholar
  41. Rodman, T.C.: Human chromosome banding by Feulgen stain aids in localizing classes of chromatin. Science 184, 171–173 (1974)Google Scholar
  42. Russell, W.C., Newman, C., Williamson, D.H.: A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature (Lond.) 253, 461–462 (1975)Google Scholar
  43. Ruthmann, A.: Methoden der Zellforschung. Stuttgart: Kosmos-Franckh 1966Google Scholar
  44. Sanchez, O., Yunis, J.J.: The relationship between repetitive DNA and chromosomal bands in man. Chromosoma (Berl.) 48, 191–202 (1974)Google Scholar
  45. Saunders, G.F., Hsu, T.C., Getz, M.J., Simes, L.E., Arrighi, F.E.: Location of a human satellite DNA in human chromosomes. Nature (Lond.) New Biol. 236, 244–246 (1972)Google Scholar
  46. Scheuermann, W., Knälmann, M.: Localization of ribosomal cistrons in metaphase chromosomes of Vicia faba (L.). Exp. Cell Res. 90, 463–465 (1975)Google Scholar
  47. Schreck, R.R., Warburton, D., Miller, O.J., Beiser, S.M., Erlanger, B.F.: Chromosome structure as revealed by a combined chemical and immunochemical procedure. Proc. nat. Acad. Sci. (Wash.) 70, 804–807 (1973)Google Scholar
  48. Schweizer, D.: Differential staining of plant chromosomes with Giemsa. Chromosoma (Berl.) 40, 307–320 (1973)Google Scholar
  49. Schweizer, D.: DAPI fluorescence of plant chromosomes prestained with actinomycin D. Exp. Cell Res. (in press, 1976a)Google Scholar
  50. Schweizer, D.: Giemsa and fluorochrome banding of polytene chromosomes in Phaseolus vulgaris and P. coccineus. In: Current chromosome research (K. Jones and P.E. Brandham, Eds.), pp. 51–56. Amsterdam: North-Holland Publishing Co. (in press) 1976bGoogle Scholar
  51. Schweizer, D., Nagl, W.: Heterochromatin diversity in Cymbidium, and its relationship to differential DNA replication. Exp. Cell Res. 98, 411–423 (1976)Google Scholar
  52. Scott, N.S., Ingle, J.: The genes for cytoplasmic ribosomal ribonucleic acid in higher plants. Plant Physiol. 51, 677–684 (1973)Google Scholar
  53. Simola, K., Selander, R.-K., Chapelle, A. de la, Corneo, G., Ginelli, E.: Molecular basis of chromosome banding. I. The effect of mouse DNA fractions on two fluorescent dyes in vitro. Chromosoma (Berl.) 51, 199–205 (1975)Google Scholar
  54. Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)Google Scholar
  55. Sumner, A.T.: The role of proteins and dyes in chromosome banding. Chromosomes today 5, 201–209 (1976)Google Scholar
  56. Timmis, J.N., Deumling, B., Ingle, J.: Localisation of satellite DNA sequences in nuclei and chromosomes of two plants. Nature (Lond.) 257, 152–155 (1975)Google Scholar
  57. Tobey, R.A., Crissman, H.A.: Unique techniques for cell cycle analysis utilizing mithramycin and flow microfluorometry. Exp. Cell Res. 93, 235–239 (1975)Google Scholar
  58. Verma, R.S., Lubs, H.A.: A simple R-banding technique. Amer. J. human Genet. 27, 110–117 (1975)Google Scholar
  59. Vosa, C.G.: Heterochromatin recognition and analysis of chromosome variation in Scilla sibirica. Chromosoma (Berl.) 43, 269–278 (1973)Google Scholar
  60. Vosa, C.G.: Heterochromatin classification in Vicia faba and Scilla sibirica. Chromosomes today 5, 185–192 (1976)Google Scholar
  61. Ward, D.C., Reich, E., Goldberg, I.H.: Base specificity in the interaction of polynucleotides with antibiotic drugs. Science 149, 1259–1263 (1965)Google Scholar
  62. Weisblum, B., de Haseth, P.L.: Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)Google Scholar
  63. Weisblum, B., Haenssler, E.: Fluorometric properties of the benzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma (Berl.) 46, 255–260 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Dieter Schweizer
    • 1
  1. 1.Institute of BotanyThe UniversityViennaAustria

Personalised recommendations