Skip to main content
Log in

Chromosome evolution in Australian rodents

II. The Rattus group

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A total of 219 wild caught specimens representing 12 of the currently recognised 13 species and subspecies of Australian Rattus have been karyotyped. No two species possessed karyotypes in common, most species and several subspecies differing markedly in chromosome number. While the diploid number varied from 2n=32 to 2n=50, the fundamental number (FN) varied only from 60 to 62, suggesting that Robertsonian rearrangements have played a major role in karyotypic evolution in the group. — Karyotypically the Australian species of Rattus fall into two groups. — the R. lutreolus group and the R. sordidus group. Of the karyotypic forms encountered in the former group, that of R. lutreolus is probably most ancestral because it is identical to that of many Asian species of Rattus. Other karyotypic forms in the R. lutreolus group can be derived as follows: That of (1) R. tunneyi tunneyi and R. t. culmorum by a single fixed pericentric inversion; (2) R. fuscipes fuscipes, R. f. greyi, R. f. assimilis and R. f. coracius by two fixed fusions; (3) R. leucopus cooktownensis by three fixed fusions; and (4) R. leucopus leucopus by four fixed fusions. Of the R. sordidus group, R. s. villosissimus may possess the most ancestral karyotype with 2n=50 (FN=60), from which R. s. colletti (2n=42; FN=60) is derived by four fusions and R. s. sordidus (2n=32; FN=60) by nine fusions, four of which appear to be homologous with those R. s. colletti. — The karyotypic data are in accord with Taylor and Horner's (1973) suggestions that (1) R. t. tunneyi and R. t. culmorum belong to one species; (2) R. lut. lutreolus and R. lut. velutinus belong to one species; (3) R. leu. leucopus and R. leu. cooktownensis belong to one species and (4) R. f. fuscipes, R. f. greyi, R. f. assimilis and R. f. coracius belong to one species. However, the large karyotypic difference between R. s. sordidus and R. s. colletti and R. s. villosissimus may indicate that these groups belong to different biological species. — Supernumerary or B-chromosomes were found in R. f. assimilis and R. t. tunneyi. A single R. t. culmorum was heterozygous for a centric fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrudz, J.: Centric fusion of chromosomes in Norwegian red cattle (NRF). Hereditas (Lund) 62, 293–302 (1969)

    Google Scholar 

  • Arrighi, F.E., Hsu, T.C.: Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81–86 (1971)

    Google Scholar 

  • Baverstock, P.R., Watts, C.H.S., Hogarth, J.T.: Karyotypic data and the specific status and taxonomic affinities of Rattus villosissimus and R. sordidus. Aust. J. Zool. 23, 293–294 (1975)

    Google Scholar 

  • Baverstock, P.R., Watts, C.H.S., Hogarth, J.T.: Heterochromatin variation in the Australian rodent Uromys caudimaculatus. Chromosoma (Berl.) 57, 397–403 (1976)

    Google Scholar 

  • Baverstock, P.R., Watts, C.H.S., Hogarth, J.T.: Chromosome studies of Australian rodents. I. The Pseudomyinae, Hydromyinae, and Uromys/Melomys. Chromosoma (Berl.) 61, 95–125 (1977)

    Google Scholar 

  • Buckton, K.E., Cunningham, C.: Variations in the chromosome number in the red fox (Vulpes vulpes). Chromosoma (Berl.) 33, 268–272 (1971)

    Google Scholar 

  • Cattanach, B.M., Moseley, H.: Nondisjunction and reduced fertility caused by the tabacco mouse metacentric chromosomes. Cytogenet. Cell Genet. 12, 264–287 (1973)

    Google Scholar 

  • Dartnall, J.A.: The chromosomes of some Tasmanian rodents. Papers Proc. roy, Soc. Tasman. 104, 79–80 (1970)

    Google Scholar 

  • Dearn, J.M.: Chiasma frequency and adaptability in locusts. Evolution (Lawrence, Kans.) 29, 572–574 (1975)

    Google Scholar 

  • Ellerman, J.R.: The families and genera of loving rodents. Vols. 2, 3 (Pt. 1). London: British Museum (Natural History) 1949

    Google Scholar 

  • Ford, C.E., Evans, E.P.: Robertsonian translocations in mice: segregational irregularities in male eterozygotes and zygotic imbalance. In Chromosomes today 4, 387–397 (1974)

    Google Scholar 

  • Gilera, E.A.: B-chromosomes, unusual inheritance of sex chromosomes, and sex ratio in the Arctic lemming (Dicrostonyx torquatus torquatus Pall. 1779). Dokl. Akad. Nauk SSSR 213, 952–955(1973)

    Google Scholar 

  • Gropp, A., Giers, E., Kolbus, V.: Trisomy in the fetal backcross progeny of male and female metacentric heterozygotes of the mouse I. Cytogenet. Cell Genet. 13, 511–535 (1974)

    Google Scholar 

  • Gustavsson, I.: Cytogenetics, distribution and phenotypic effects of a translocation in Swedish cattle. Hereditas (Lund) 63, 68–169 (1969)

    Google Scholar 

  • Hayata, I.: Chromosomal polymorphism caused by supernumerary chromosomes in the field mouse Apodemus giliacus. Chromosoma (Berl.) 42, 403–414 (1973)

    Google Scholar 

  • Hayman, D.L., Martin, P.G.: Supernumerary chromosomes in the marsupial, Shoinobates volans (Kerr). Aust. J. biol. Sci. 18, 1081–1082 (1965)

    Google Scholar 

  • Hayman, D.L., Martin, P.G., Waller, P.P.: Parallel mosaicism of supernumerary chromosomes and sex chromosomes in Echymipera kalabu (Marsupialia). Chromosoma (Berl.) 27, 371–380 (1969)

    Google Scholar 

  • Kennedy, J.A.: The karyotypes of some Australian rodents (Rodentia:Muridae). Aust. J. Zool. 17, 465–471 (1969)

    Google Scholar 

  • Lee, M.R., Zimmerman, E.G.: Robertsonian polymorphism in the cotton rat, Sigmodon fulviventer. J. Mammal. 50, 333–339 (1969)

    Google Scholar 

  • Martin, J.H.D.: Chromosomes of some native Muridae in Queensland. Qld. J. Agric. Anim. Sci. 26, 125–141 (1969)

    Google Scholar 

  • Matthey, R.: Cytologie comparée et polymorphisme chromosomique chez des Mus africains appartenant aux groups bufo-triton et minutoides (Mammalia-Rodentia). Cytogenetics 2, 290–322 (1963a)

    Google Scholar 

  • Matthey, R.: Polymorphisme chromosomique intraspécifique chez un mammifère Leggada minutoides Smith (Rodentia-Muridae). Rev. suisse Zool. 70, 173–190 (1963b)

    Google Scholar 

  • Müntzing, A.: Accessory chromosomes. Ann. Rev. Genet. 8, 125–141 (1974)

    Google Scholar 

  • Nadler, C.F., Lay, D.M., Hassinger, J.D.: Cytogenetic analysis of wild sheep populations in northern Iran. Cytogenetics 10, 137–152 (1971)

    Google Scholar 

  • Patton, J.L.: A complex system of chromosomal variation in the pocket mouse; Perognathus baileyi Merriam. Chromosoma (Berl.) 36, 241–255 (1972)

    Google Scholar 

  • Pollock, D.L., Bowman, J.C.: A Robertsonian translocation in British Friesian cattle. J. Reprod. Fertil. 40, 423–432 (1974)

    Google Scholar 

  • Raman, R., Sharma, T.: DNA replication, G- and C-bands and meiotic behaviour of supernumerary chromosomes of Rattus rattus (Linn.). Chromosoma (Berl.) 45, 111–119 (1974)

    Google Scholar 

  • Robinson, J.F., Robinson, A.C., Watts, C.H.S., Baverstock, P.R.: Notes on rodents and marsupials and their ectoparasites collected in Australia in 1974/75. Trans. roy. Soc. S. Aust. (in press, 1977)

  • Shellhammer, H.S.: Supernumerary chromosomes of the harvest mouse, Reithrodontomys megalotis. Chromosoma (Berl.) 27, 102–108 (1969)

    Google Scholar 

  • Tate, G.H.H.: Rodents of Australia and New Guinea. Results of Archbold Expedition, 65. Bull. Amer. Mus. nat. Hist. 97, 183–430 (1951)

    Google Scholar 

  • Taylor, J.M., Horner, B.E.: Systematics of native Australian Rattus (Rodentia, Muridae). Results of Archbold Expedition, 98. Bull. Amer. Mus. nat. Hist. 150, 1–130 (1973)

    Google Scholar 

  • Tettenborn, U., Gropp, A.: Meiotic nondisjunction in mice and mouse hybrids. Cytogenetics 9, 272–283 (1970)

    Google Scholar 

  • Wheeler, S.: The ecology of Rattus fuscipes greyi on Kangaroo Island, South Australia. Unpublished Ph.D thesis; University of Adelaide, 1970

  • Wood, D.H.: The ecology of Rattus fuscipes and Melomys cervinipes (Rodentia: Muridae) in a south-east Queensland rain forest. Aust. J. Zool. 19, 371–392 (1971)

    Google Scholar 

  • Yong, H.S.: Karyotype of four Malayan rats (Muridae, genus Rattus Fischer). Cytologia (Tokyo) 33, 174–180 (1968)

    Google Scholar 

  • Yong, H.S.: Karyotypes of Malayan rats (Rodentia-Muridae, genus Rattus Fischer). Chromosoma (Berl.) 27, 245–267 (1969)

    Google Scholar 

  • Yosida, T.H.: Evolution of karyotypes and differentiation in 13 Rattus species. Chromosoma (Berl.) 40, 285–297 (1973)

    Google Scholar 

  • Yosida, T.H., Kato, H., Tsuchiya, K., Sagai, T., Moriwaki, K.: Cytogenetical survey of black rats, Rattus rattus, in southwest and central Asia, with special regard to the evolutional relationship between three geographical types. Chromosoma (Berl.) 45, 99–109 (1974)

    Google Scholar 

  • Yosida, T.H., Sagai, T.: Similarity of Giemsa banding patterns of chromosomes in several species of the genus Rattus. Chromosoma (Berl.) 41, 93–101 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baverstock, P.R., Watts, C.H.S., Hogarth, J.T. et al. Chromosome evolution in Australian rodents. Chromosoma 61, 227–241 (1977). https://doi.org/10.1007/BF00292807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292807

Keywords

Navigation