Skip to main content
Log in

Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Tay-Sachs disease is an autosomal recessive lysosomal storage disease caused by β-hexosaminidase A deficiency and leads to death in early childhood. The disease results from mutations in the HEXA gene, which codes for the α chain of β-hexosaminidase. The catastrophic neurodegenerative progression of the disease is thought to be a consequence of massive neuronal accumulation of GM2 ganglioside and related glycolipids in the brain and nervous system of the patients. Fuller understanding of the pathogenesis and the development of therapeutic procedures have both suffered from the lack of an animal model. We have used gene targeting in embryonic stem (ES) cells to disrupt the mouse Hexa gene. Mice homozygous for the disrupted allele mimic several biochemical and histological features of human Tay-Sachs disease. Hexa-/-mice displayed a total deficiency of β-hexosaminidase A activity, and membranous cytoplasmic inclusions typical of GM2 gangliosidoses were found in the cytoplasm of their neurons. However, while the number of storage neurons increased with age, it remained low compared with that found in human, and no apparent motor or behavioral disorders could be observed. This suggests that the presence of β-hexosaminidase A is not an absolute requirement of ganglioside degradation in mice. These mice should help us to understand several aspects of the disease as well as the physiological functions of hexosaminidase in mice. They should also provide a valuable animal model in which to test new forms of therapy, and in particular gene delivery into the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, M., Volk, B.W., Schneck, L., Relkin, R. (1974). Ultrastructural studies of eight cases of fetal Tay-Sachs disease. Lab. Invest. 30, 102.

    Google Scholar 

  • Akli, S., Chelly, J., Lacorte, J.M., Poenaru, L., Kahn, A. (1991). Seven novel Tay-Sachs mutations detected by chemical mismatch cleavage of PCR-amplified cDNA fragments. Genomics 11, 124–134.

    Google Scholar 

  • Akli, S., Boué, J., Kleijer, W., Vamos, E., Young, E., Gatti, R., DiNatale, P., Motte, A., Vanier, M.T., Maire, I., Miranda, C., Salvaire, R., Sandhoff, K., Poenaru, L. (1993). Collaborative study of molecular epidemiology of Tay-Sachs disease in Europe. Eur. J. Hum. Genet. 1, 229–238.

    Google Scholar 

  • Andermann, E., Andermann, F., Patry, G., Lafontaine, R., Geoffroy, G., Seriver, C.R., Wolfe, L.S. (1971). Tay-Sachs disease in Quebec: evidence for a geographic aggregate in the French-Canadian population with identification of a new retardation syndrome with possible linkage to the Tay-Sachs gene. Trans. Am. Neurol. Assoc. 98, 17–21.

    Google Scholar 

  • Bapat, B., Ethier, M., Neote, K., Mahuran, D., Gravel, R.A. (1988). Cloning and sequence of a cDNA encoding the β-subunit of mouse β-hexosaminidase. FEBS Lett. 237, 191–195.

    Google Scholar 

  • Bayrelan, J., Hechtman, P., Saray, W. (1984). Synthesis of 4-methylumbelliferyl β-D-N-acetylglucosamine-6-sulfate and its use in classification of GM2 gangliosidosis genotypes. Clin. Chim. Acta. 143, 73–89.

    Google Scholar 

  • Beccari, T., Orlacchio, A., Stirling, J.L. (1988). Identification of β-N-acetylhexosaminidase A in mouse tissues with the fluorogenic substrate 4-methylumbelliferyl-β-N-acetylglucosamine 6-sulphate. Biochem. J. 252, 617–620.

    Google Scholar 

  • Beccari, T., Hoade, J., Orlacchio, A., Stirling, J.L. (1992). Cloning and sequence analysis of a cDNA encoding the α-subunit of mouse β-N-acetylhexosaminidase and comparison with the human enzyme. Biochem. J. 285, 593–596.

    Google Scholar 

  • Boedecker, H.J., Mellman, W.J., Tedesco, T.A., Croce, C.M. (1976). Assignment of the human gene for HEXB to chromosome 5. Exp. Cell. Res. 93, 468–472.

    Google Scholar 

  • Burg, J., Banerjee, A., Conzelmann, E., Sandhoff, K. (1983). Activating proteins for gangliosides GM2 degradation by β-hexosaminidase isoenzymes in tissue extracts from different species. Hoppe-Seyler's Z. Physiol. Chem. 364, 821–829.

    Google Scholar 

  • Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.

    Google Scholar 

  • Cork, L.C., Munnell, J.F., Lorentz, M.D., Murphy, J.V., Baker, J.H., Rattazzi, M.C. (1977). GM2 ganglioside lysosomal storage disease in cats with β-hexosaminidase deficiency. Science 196, 1014–1017.

    Google Scholar 

  • Della Fazia, M.A., Beccari, T., Servillo, G., Viola-Magni, M.P., Orlacchio, A. (1994). Different expression of β-N-acetylhexosaminidase in mouse tissues. Biochem. Biophys. Res. Commun. 199, 1341–1346.

    Google Scholar 

  • Enquist, L.W., Vande-Woude, G.F., Wagner, M., Smiley, J.R., Summers, W.C. (1979). Construction and characterization of a recombinant plasmid encoding the gene for the thymidine kinase of Herpes simplex type 1 virus. Gene 7, 335–342.

    Google Scholar 

  • Farooqui, A., Srivastava, P.N. (1980). Isolation of β-N-acetylhexosaminidase from rabbit semen and its role in fertilization. Biochem. J. 191, 827–834.

    Google Scholar 

  • Gilbert, F., Kucherlopati, R., Creagan, R.P., Murnane, M.J., Darlington, G.J., Ruddle, F.H. (1975). Tay-Sachs' and Sandhoff's diseases: the assignment of genes for hexosaminidase A and B to individual human chromosome. Proc. Natl. Acad. Sci. USA 72, 263–267.

    Google Scholar 

  • Ishikawa, Y., Li, S.-C., Wood, P.A., Li, Y.-T. (1987). Biochemical basis of type AB GM2 gangliosidosis in a Japanese spaniel. J. Neurochem. 48, 860–864.

    Google Scholar 

  • Korneluk, R.G., Mahuran, D.J., Neote, K., Klavins, M.H., O'Dowd, B.F., Tropak, M., Willard, H.F., Anderson, M.-J., Lowden, J.A., Gravel, R.A. (1986). Isolation of cDNA clones for the α-subunit of human β-hexosaminidase. J. Biol. Chem. 261, 8407–8413.

    Google Scholar 

  • Kosanke, S.D., Pierce, K.R., Bay, W.W. (1978). Clinical and biochemical abnormalities in porcine GM2-gangliosidosis. Vet. Pathol. 15, 685–699.

    Google Scholar 

  • Leinekugel, P., Michel, S., Conzelman, E., Sandhoff, K. (1992). Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum. Genet. 88, 513–523.

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, P.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Maertens, P., Dyken, P.R. (1995). Neurological degenerative diseases. In Pediatric Neuropathology, Serge Duckett, ed. (Baltimore: Williams & Wilkins), pp. 545–591.

    Google Scholar 

  • Mahuran, D.J. (1991). The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis. Biochem. Biophys. Acta 1991, 87–94.

    Google Scholar 

  • Mansour, S.L., Thomas, K.R., Capecchi, M.R. (1988). Disruption of the protooncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Google Scholar 

  • Miller, D.J., Gong, X., Shur, B.D. (1993). Sperm require β-N-acetylglucosaminidase to penetrate through the egg zona pellucida. Development 118, 1279–1289.

    Google Scholar 

  • Myerowitz, R., Piekarz, R., Neufeld, E.F., Shows, T.B., Suzuki, K. (1985). Human β-hexosaminidase α chain: coding sequence and homology with the β chain. Proc. Natl. Acad. Sci. USA 82, 7830–7834.

    Google Scholar 

  • Neote, K., Bapat, B., Dumbrille-Ross, A., Troxal, C., Schuster, S.M., Mahuran, D.J., Gravel, R.A. (1988). Characterization of the human HEXB gene encoding lysosomal β-hexosaminidase. Genomics 3, 279–286.

    Google Scholar 

  • Neufeld, E.F. (1989). Natural history and inherited disorders of a lysosomal enzyme, β-hexosaminidase. J. Biol. Chem. 264, 10927–10930.

    Google Scholar 

  • Neuwelt, E.A., Jonshon, W.G., Blank, N.K., Pagel, M.A., Malsen-McClure, C., McClure, M.J., Wu, P.M. (1985). Characterization of a new model of GM2-gangliosidosis (Sandhoff's disease) in Koratz cats. J. Clin. Invest. 76, 482–490.

    Google Scholar 

  • Petersen, G., Rotter, J., Cantor, R., Field, L., Greenwald, S., Lim, J., Roy, C., Schoenfeld, J., Lowden, A., Kaback, M. (1983). The geographic variation and origin of the Tay-Sachs disease gene in North American Jewish and non-Jewish populations. Am. J. Hum. Genet. 35, 1258–1269.

    Google Scholar 

  • Proia, R.L. (1988). Gene encoding the human β-hexosaminidase β chain: extensive homology of intron placement in the α-and β-chain genes. Proc. Natl. Acad. Sci. USA 85, 1883–1887.

    Google Scholar 

  • Robertson, E.J., Bradley, A. (1986). Production of permanent cell lines from early embryos and their use in studying developmental problems. In Experimental Approaches to Mammalian Embryonic Development, J.R. Pedersen and R.A. Pedersen, eds. (Oxford: IRL Press), pp. 475–508.

    Google Scholar 

  • Sandhoff, K., Conzelman, E., Neufeld, E.F., Kabach, M.M., Suzuki, K. (1989). The GM2 gangliosidoses. In: The Metabolic Basis of Inherited Diseases, C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, eds. (New York: McGraw-Hill), pp. 1807–1839.

    Google Scholar 

  • Stirling, J.L., Beccari, T., Hoade, J., Pezzetti, F., Calvitti, M., Bechetti, E., Orlacchio, A. (1991). Analysis of the patterns of expression of mRNAs for the alpha-and beta-subunits of the lysosomal enzyme beta-N-acetylhexosaaminidase in mouse epididymis and testis. Histochem. J. 23, 490–494.

    Google Scholar 

  • von Specht, B., Geiger, B., Arnon, R., Passwell, J., Keren, G., Goldman, B., Padeh, B. (1979). Enzyme replacement in Tay-Sachs disease. Neurology 29, 848–854.

    Google Scholar 

  • Wakamatsu, N., Benoit, G., Lamhonwah, A.-M., Zhang, Z.-X., Trasler, J.M., Triggs-Raine, B.L., Gravel, R.A. (1994). Structural organization, sequence and expression of the mouse HEXA gene encoding the α subunit of hexosaminidase A. Genomics 24, 110–119.

    Google Scholar 

  • Wu, C.-L., Melton, D.W. (1993). Production of a model for Leish-Nyhan syndrome in hypoxanthine phosphoribosyltransferase-deficient mice. Nature Genet. 3, 235–240.

    Google Scholar 

  • Yamanaka, S., Jonshon, M.D., Grinberg, A., Westphal, H., Crawley, J.N., Tanike, M., Suzuki, K., Proia, R.L. (1994). Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc. Natl. Acad. Sci. USA 91, 9975–9979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Tannoudji, M., Marchand, P., Akli, S. et al. Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease. Mammalian Genome 6, 844–849 (1995). https://doi.org/10.1007/BF00292433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292433

Keywords

Navigation