Mammalian Genome

, Volume 6, Issue 12, pp 830–838 | Cite as

New seizure frequency QTL and the complex genetics of epilepsy in EL mice

  • W. N. Frankel
  • A. Valenzuela
  • C. M. Lutz
  • E. W. Johnson
  • W. F. Dietrich
  • J. M. Coffin
Original Contributions


EL/Suz (EL) mice experience recurrent seizures that are similar to common partial complex epilepsy in humans. In the mice, seizures occur naturally at 90–100 days of age, but can be induced in younger mice and analyzed as a semi-quantitative trait after gentle rhythmic stimulation. A previous genetic mapping study of EL backcrosses to the strains ABP/LeJ or DBA/2J showed two quantitative trait loci (QTL) with large effects on seizure frequency (El1, Chr 9; El2, Chr 2) and implied the existence of other QTL with lesser effects. To further the understanding of EL-derived seizure alleles, we examined intercross progeny of EL and the strains ABP/LeJ and DDY/Jcl, and also a backcross of (EL x DDY)F1 hybrids to DDY. A new large-effect seizure frequency QTL was found (El5, Chr 14), a more minor QTL confirmed (El3, Chr 10), and two additional QTL proposed (El4, Chr 9; El6, Chr 11). The serotonin receptor gene, Htr2a, maps near and is a candidate for El5, and linkages of other serotonin receptor genes to seizure frequency QTL are noted. In addition, a strong gender effect was revealed, and epistasis was found between Chr 9 and Chr 14 markers. Despite this progress, however, our results revealed a more complex determinism of epilepsy in EL mice than previously described. In particular, no single El locus or pair was essential for frequent seizures, as QTL with large effects, such as El5, El2, and El1, were highly dependent on genetic context. Our studies highlight the importance of gene interaction in some complex mammalian traits defined by natural variation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basten, C.J., Weir, B.S., Zeng, Z.-B. (1994). Zmap-A QTL Cartographer. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 22:65–66. Eds. C. Smith, J.S. Gavora, B. Bemkel, J. Chesnais, W. Fairfull, J.P. Gibson, B.W. Kennedy, E.B. Burnside.Google Scholar
  2. Bowman, M.A. (1994). Prevention of diabetes in the NOD mouse: implications for therapeutic intervention in human disease. Imm. Today 15, 115–120.Google Scholar
  3. Brigande, J.V., Wieraszko, A., Albert, M.D., Balkema, G.W., Seyfried, T.N. (1992). Biochemical correlates of epilepsy in the E1 mouse: analysis of glial fibrillary acidic protein and gangliosides. J. Neurochem. 58, 752–760.Google Scholar
  4. Cheverud, J.M., Routman, E.J. (1995). Epistasis and its contribution to genetic variance components. Genetics 139, 1455–1461.Google Scholar
  5. Collins, R.L. (1972). Audiogenic seizures. In Experimental Models of Epilepsy—A Manual for the Laboratory Worker, D.P. Purpura, D.P. Penry, D. Tower, D.M. Woodbury, R. Walter, eds (New York: Raven Press), pp. 347–372.Google Scholar
  6. Darvasi, A., Soller, M. (1994). Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138, 1365–1373.Google Scholar
  7. Dietrich, W.F., Katz, H., Lincoln, S.E., Shin, H.-S., Friedman, J., Dracopoli, N., Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.Google Scholar
  8. Dietrich, W.F., Lander, E.S., Smith, J.S., Moser, A.R., Gould, K.A., Luongo, C., Borenstein, N., Dove, W.F. (1993). Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639.Google Scholar
  9. Dietrich, W.F., Miller, J.C., Steen, R.G., Merchant, M., Damron, D., Nahf, R., Gross, A., Joyce, D.C., Wessel, M., Dredge, R.D., Marquis, A., Stein, L.D., Goodman, N., Page, D.C., Lander, E.S. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–225.Google Scholar
  10. Ding, D., Toth, M., Zhou, Y., Parks, C., Hoffman, B.J., Shenk, T. (1993). Glial cell-specific expression of the serotonin 2 receptor gene: selective reactivation of a repressed promoter. Brain Res. Mol. Brain Res. 20, 181–191.Google Scholar
  11. Flavin, H. J., Seyfried, T.N. (1994). Enhanced aspartate release related to epilepsy in (EL) mice. J. Neurochem. 63, 592–595.Google Scholar
  12. Frankel, W.N., Johnson, E.W., Lutz, C.M. (1995). Congenic strains show effects of the epilepsy quantitative trait locus, El2, separate from other El loci. Mamm. Genome 6, 839–843.Google Scholar
  13. Frankel, W.N., Stoye, J.P., Taylor, B.A., Coffin, J.M. (1990). A genetic linkage map of endogenous murine leukemia proviruses. Genetics 124, 221–236.Google Scholar
  14. Frankel, W.N., Sweet, H.O., Davisson, M.T. (1994a). The stumbler mutation maps to proximal mouse Chromosome 2. Mamm. Genome 5, 659–662.Google Scholar
  15. Frankel, W.N., Taylor, B.A., Noebels, J.L., Lutz, C.M. (1994b). Genetic epilepsy model derived from common inbred mouse strains. Genetics 138, 481–489.Google Scholar
  16. Fueta, Y., Matsuoka, S., Mita, T. (1986). Crossbreeding analysis of the mouse epilepsy. Samgyo Ika Daigaku Zasshi, Suppl. 8, 417–424.Google Scholar
  17. Fukahori, M., Itoh, M. (1990). Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse. Brain Res. 529, 16–22.Google Scholar
  18. Garey, C.E., Schwarzman, A.L., Rise, M.L., Seyfried, T.N. (1994). Ceruloplasmin gene defect associated with epilepsy in EL mice. Nature Genet. 6, 426–431.Google Scholar
  19. Ghosh, S., Palmer, S.M., Rodrigues, N.R., Cordell, H.J., Hearne, C.M., Cornall, R.J., Prins, J.B., McShane, P., Lathrop, G.M., Peterson, L.B. (1993). Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Gent. 4, 404–409.Google Scholar
  20. Gregor, P., Patel, A., Shimada, S., Lin, C.L., Rochelle, J.M., Kitayama, S., Seldin, M.F., Uhl, G.R. (1993). Murine serotonin transporter: sequence and localization to Chromosome 11. Mamm. Genome 4, 283–284.Google Scholar
  21. Haley, C.S., Knott, S.A. (1992). A simple regression model for interval mapping in line crosses. Heredity 69, 315–324.Google Scholar
  22. Hiramatsu, M. (1981). Brain monoamine levels and E1 mouse convulsions. Folia Psychiatr. Neurol. Jpn. 35, 261–266.Google Scholar
  23. Hiramatsu, M., Ogawa, K., Kabuto, H., Mori, A. (1987). Reduced uptake and release of 5-hydroxytryptamine and taurine in the cerebral cortex of epileptic El mice. Epilepsy Res. 1, 40–45.Google Scholar
  24. Hiramatsu, M., Edamatsu, R., Suzuki, S., Shimada, M., Mori, A. (1990). Regional excitatory and inhibitory amino acid levels in epileptic El mouse brain. Neurochem. Res. 15, 821–825.Google Scholar
  25. Honda, T. (1984a). Amino acid metabolism in the brain with convulsive disorders. Part I: Free amino acid patterns in the brain of E1 mouse with convulsive seizure. Brain Dev. 6, 17–21.Google Scholar
  26. Honda, T. (1984b). Amino acid metabolism in the brain with convulsive disorders. Part II: the effects of anticonvulsants on convulsions and free amino acid patterns in the brain of El mouse. Brain Dev. 6, 22–26.Google Scholar
  27. Imaizumi, K., Naksno, T. (1964). Mutant stocks. Strain: El. Mouse Newslett. 31, 57.Google Scholar
  28. Imaizumi, K., Ho, S., Kutsokake, G., Takizawa, T., Fuziwara, K., Tutikawa, K. (1959). Epilepsy-like anomaly of mice. Jikken Dobutsu [Exp. Anim. (Tokyo)] 8, 6–10.Google Scholar
  29. Ishida, N., Kasamo, Y., Suzuki, J. (1987). The roles of parietal cortex and hippocampus in seizures of the El mouse. Jpn. J. Psychiatry Neurol. 41, 498–499.Google Scholar
  30. Ishida, N., Kasamo, K., Nakamoto, Y., Suzuki, J. (1993). Epileptic seizure of El mouse initiates at the parietal cortex: depth EEG observation in freely moving condition using buffer amplifier. Brain Res. 608, 52–57.Google Scholar
  31. Iwata, H., Yamagami, S., Lee, E., Matsuda, T., Baba, A. (1979). Increase of brain taurine contents of E1 mice by physiological stimulation. Jpn. J. Pharmacol. 29, 503–507.Google Scholar
  32. Janjua, N.A., Kabuto, H., Mori, A. (1992). Increased plasma glutamic acid in a genetic model of epilepsy. Neurochem. Res. 17, 293–296.Google Scholar
  33. Kabuto, H., Yokoi, I., Takei, M., Kurimoto, T., Mori, A. (1994). The anticonvulsant effect of citalopram on El mice, and the levels of tryptophan and tyrosine and their metabolites in the brain. Neurochem. Res. 19, 463–467.Google Scholar
  34. Kaushik, N., Stoye, J.P. (1994). Intracisternal A-type particles as genetic markers: detection by repeat element viral element amplified locus-PCR. Mamm. Genome 5, 688–695.Google Scholar
  35. Lander, E.S., Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.Google Scholar
  36. Lander, E.S., Schork, N.J. (1994). Genetic dissection of complex traits. Science 265, 2037–2048.Google Scholar
  37. Lander, E.S., Green P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newberg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.Google Scholar
  38. Martin, B., Marchalan, C., Chapouthier, G., Motta, R. (1994). Evidence for a multigenic system controlling methyl-β-carboline-3-carboxylate (β-CMM)-induced seizures. Behav. Genet. 24, 285–297.Google Scholar
  39. Martin, B., Clément, Y., Venault, P., Chapouthier, G. (1995). Mouse chromosomes 4 and 13 are involved in beta-carboline-induced seizures. J. Hered., in press.Google Scholar
  40. Murashima, Y.L., Suzuki, J. (1989). The GABAergic role of the epileptogenesis in the El mouse. Jpn. J. Psychiatry Neurol. 43, 557–558.Google Scholar
  41. Mutoh, K., Ito, M., Tsuda, H., Shiraishi, H., Oguro, K., Shirasaka, Y., Okuno, T., Mikawa, H. (1993). Depth EEG in mutant epileptic E1 mice: demonstration of secondary generalization of the seizure from the hippocampus. Electroencephalogr. Clin. Neurophysiol. 86, 205–212.Google Scholar
  42. Nakano, K., Takahashi, S., Mizobuchi, M., Kuroda, T., Masuda, K., Kitoh, J., (1993). High levels of quinolinic acid in brain of epilepsy-prone E1 mice. Brain Res. 619, 195–198.Google Scholar
  43. Neumann, P.E., Frankel, W.N., Letts, V.A., Coffin, J.M., Copp, A.J., Bernfield, M. (1994). Multifactorial inheritance of neural tube defects: localization of the major gene and two modifiers in ct mutant mice. Nature Genet. 6, 357–362.Google Scholar
  44. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E., Tanksley, S.D. (1988). Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726.Google Scholar
  45. Paterson, A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabinowitch, H.D., Lincoln, S.E., Lander, E.S., Tanksley, S.D. (1991). Mendelian factors underlying quantitative traits in tomato: comparison across species, generation, and environments. Genetics 127, 181–197.Google Scholar
  46. Rise, M.L., Frankel, W.N., Coffin, J.M., Seyfried, T.N. (1991). Genes for epilepsy mapped in the mouse. Science 253, 669–673.Google Scholar
  47. Seyfried, T.N., Brigande, J.V., Flavin, H.J., Frankel, W.N., Rise, M.L., Wieraszko, A. (1992). Genetic and biochemical correlates of epilepsy in the EL mouse. Neurosciences 18, 9–20.Google Scholar
  48. Simon-Chazottes, D., Cloez-Tayarani, I., Fillion, M.P., Guénet, J.-L., Fillion, G. (1993). The serotonin 5-HT1B receptor subtype (Htrlb) gene maps to mouse chromosome 9. Mamm. Genome 4, 397–398.Google Scholar
  49. Sokal, R.R., Rolfe, F.J. (1981). Biometry, 2nd ed. (New York: W.H. Freeman and Co.).Google Scholar
  50. Suzuki, J. (1976). Paroxysmal discharges in the electroencephalogram of the El mouse. Experientia 32, 336–337.Google Scholar
  51. Suzuki, J., Nakamoto, Y. (1977a). El mouse: a model of sensory precipitating epilepsy. Excerpta Med. 427, 81–82.Google Scholar
  52. Suzuki, J., Nakamoto, Y. (1977b). Seizure patterns and electroencephalograms of E1 mouse. Electroencephalogr. Clin. Neurophysiol. 43, 299–311.Google Scholar
  53. Suzuki, J., Nakamoto, Y., Nakayama, S., Shinkawa, Y. (1981). Identification of abnormally excited region due to epileptic seizure of El mouse by 2-DG method. Neurosci. Lett. S6, S46.Google Scholar
  54. Suzuki, J., Nakamoto, Y., Shinkawa, Y. (1983). Local cerebral glucose utilization in epileptic seizures of the mutant El mouse. Brain Res. 266, 358–363.Google Scholar
  55. Suzuki, S., Mori, A. (1992). Regional distribution of tyrosine, tryptophan, and their metabolites in the brain of epileptic El mice. Neurochem. Res. 17, 693–698.Google Scholar
  56. Taylor, B.A., Rowe, L., Grieco, D.A. (1993). The MEV mouse linkage testing stock: mapping 30 novel proviral insertions and establishment of an improved stock. Genomics 16, 380–394.Google Scholar
  57. Tecott, L.H., Sun, L.M., Akana, S.F., Strack, A.M., Lowenstein, D.H., Dallman, M.F., Julius, D. (1995). Eating disorder and epilepsy in mice lacking 5HT2C serotonin receptors. Nature 374, 542–546.Google Scholar
  58. Tsuda, H., Ito, M., Oguro, K., Mutoh, K., Shiraishi, H., Shirasaka, Y., Mikawa, H. (1993). Age- and seizure-related changes in noradrenaline and dopamine in several brain regions of epileptic El mice. Neurochem. Res. 18, 111–117.Google Scholar
  59. Wimer, R.E., Wimer, C.C., Winn, C.J., Raval, N.A., Alameddine, L., Cohen, A.J. (1990). New strains of seizure-prone mice. Brain Res. 534, 94–98.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • W. N. Frankel
    • 1
  • A. Valenzuela
    • 1
  • C. M. Lutz
    • 1
  • E. W. Johnson
    • 1
  • W. F. Dietrich
    • 2
  • J. M. Coffin
    • 2
  1. 1.The Jackson LaboratoryBar HarborUSA
  2. 2.Whitehead InstituteCambridgeUSA

Personalised recommendations