Skip to main content
Log in

Position-effect variegation and intercalary heterochromatin: a comparative study

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The behaviour of IH (intercalary heterochromatin) regions of Drosophila melanogaster polytene chromosomes was compared with that of euchromatin condensed as a result of position-effect variegation. Normally replicating regions, when subject to such an effect, were found to become among the last regions in the genome to replicate. It is shown that the factors which enhance position effect (low temperature, the removal of the Y chromosome, genetic enhancers of position effect) increase the weak point frequency in the IH, i.e. enhance DNA underreplication in these regions. We suggest that the similarity in the properties of IH, CH (centromeric heterochromatin) and the dense blocks induced by position effect is due to strong genetic inactivation and supercondensation caused by specific proteins in early development. The primary DNA structure is not likely to play a key role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev EV, Gvozdev VA (1974) Changed pattern of transcription and replication in polytene chromosomes of Drosophila melanogaster resulting from eu-heterochromatin rearrangement. Chromosoma 45:173–191

    Google Scholar 

  • Ananiev EV, Gvozdev VA (1975) Differences in DNA replication pattern in the X chromosome of males, females and intersexes of Drosophila melanogaster. Chromosoma 49:233–244

    Google Scholar 

  • Arcos-Teran L (1972) DNS replication und die Natur der spät replizierenden Orte im X-Chromosom von Drosophila melanogaster. Chromosoma 37:233–296

    Google Scholar 

  • Baumann A, Krah-Jentgens I, Muller R, Muller-Holtkamp F, Seidel R, Kecshemethy N, Casal J, Ferrus A, Pongs O (1987) Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA channel transcript with homology to vertebrate Na+ channel. EMBO J 16:29–49

    Google Scholar 

  • Belyaeva ES, Aizenzon MG, Kiss I, Gorelova TD, Pak SD, Umbetova GH, Kramers PGN, Zhimulev IF (1982) Reports on new mutants. Dros Inf Serv 58:184–190

    Google Scholar 

  • Berendes HD (1966) Differential replication of male and female X chromosome in Drosophila. Chromosoma 20:32–43

    Google Scholar 

  • Bolshakov VN, Zharkikh AA, Zhimulev IF (1985) Intercalary heterochromatin in Drosophila. II. Heterochromatin features in relation to local DNA content along the polytene chromosomes of Drosophila melanogaster. Chromosoma 92:200–208

    Google Scholar 

  • Cribbs DL, Leung J, Newton CH, Hayashi S, Miller RC Jr, Terner GM (1987) Extensive microheterogeneity of serine tRNA genes from Drosophila melanogaster. J Mol Biol 197:397–404

    Google Scholar 

  • Dorn R, Heymann S, Lindigkeit R, Reuter G (1986) Suppressor mutation of position-effect variegation in Drosophila melanogaster affecting chromatin properties. Chromosoma 93:398–403

    Google Scholar 

  • Eissenberg JC, Elgin SCR, James TC (1987) A heterochromatic specific chromosomal protein gene in Drosophila melanogaster. Genetics 116:(suppl) 4

    Google Scholar 

  • Hartmann-Goldstein IJ (1967) On the relationship between heterochromatization and variegation in Drosophila, with special reference to temperature-sensitive periods. Genet Res 10:143–159

    Google Scholar 

  • Hartmann-Goldstein I, Goldstein DJ (1979) Effect of temperature on morphology and DNA-content of polytene chromosomes in Drosophila. Chromosoma 71:333–346

    Google Scholar 

  • Healy MJ, Russel RJ, Miklos GLG (1988) Molecular studies on interspersed repetitive and unique sequences in the region of the completion group uncoordinated on the X chromosome of Drosophila melanogaster. Mol Gen Genet 213:63–71

    Google Scholar 

  • Hilliker AJ, Appels R, Schalet A (1980) The genetic analysis of Drosophila melanogaster heterochromatin. Cell 21:607–619

    Google Scholar 

  • Ilyina OV, Sorokin AV, Belyaeva ES, Zhimulev IF (1980) Report on Drosophila new mutants. Dros Int Serv 55:205

    Google Scholar 

  • James TS, Elgin SCR (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3262–3282

    Google Scholar 

  • Kalish WE, Hägele K (1976) Correspondence of banding patterns to 3H-thymidine labelling patterns in polytene chromosomes. Chromosoma 57:19–23

    Google Scholar 

  • Khesin RB, Leibovitch BA (1976) Chromosome structure, histones and gene activity in Drosophila. Mol Biol (USSR) 10:3–33

    Google Scholar 

  • Kholodilov NG, Bolshakov VN, Blinov VM, Soloviev VV, Zhimulev IF (1987) Molecular and genetic characteristic of Drosophila melanogaster new genomic element with varying location. DAN USSR 295:984–989

    Google Scholar 

  • Kholodilov NG, Bolshakov VN, Blinov VM, Solovyov VV, Zhimulev IF (1988) Intercalary heterochromatin in Drosophila. III. Homology between DNA sequences from the Y chromosome, bases of polytene chromosome limbs, and chromosome 4 of Drosophila. Chromosoma 97:247–253

    Google Scholar 

  • Lamb MM, Laird CD (1987) Three euchromatic DNA sequences underreplicated in polytene chromosomes of Drosophila and localized in constrictions and ectopic fibers. Chromosoma 95:227–235

    Google Scholar 

  • Lefevre G (1976) A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol la. Academic Press, London New York San Francisco, pp 461–480

    Google Scholar 

  • Levinger L (1985) Nucleosomal structure of two Drosophila melanogaster simple satellites. J Biol Chem 260:11799–11804

    Google Scholar 

  • Lifschitz E (1983) Sequence replication and banding organization in the polytene chromosomes of Drosophila melanogaster. J Mol Biol 164:17–34

    Google Scholar 

  • Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Wash Publ No 627, p 472

  • Livak KJ (1984) Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is trancribed during spermatogenesis. Genetics 107:611–634

    Google Scholar 

  • Mulder MP, Duijn P, van Gloor HJ (1968) The replication organization of DNA in polytene chromosomes of Drosophila hydei. Genetica 39:385–428

    Google Scholar 

  • Reuter G, Werner W, Hoffmann H (1982) Mutants affecting position-effect heterochromatinization in Drosophila melanogaster. Chromosoma 85:539–551

    Google Scholar 

  • Rodman TC (1967) Control of polytenic replication in Dipterian larvae. II. Effect of growth temperature. J Cell Physiol 70:187–190

    Google Scholar 

  • Schultz J (1936) Variegation in Drosophila and the inert chromosome regions. Proc Natl Acad Sci USA 22:27–33

    Google Scholar 

  • Sinclair DAR, Lloyd VK, Grigliatti TA (1989) Characterization of mutations that enhance position-effect variegation in Drosophila melanogaster. Mol Gen Genet 216:328–333

    Google Scholar 

  • Spofford JB (1976) Position effect variegation in Drosophila. In Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1C. Academic Press, London New York San Francisco, pp 955–1018

    Google Scholar 

  • Tolchkov EV, Balakireva MD, Alatortsev VE (1984) Inactivation of the X chromosome region with a known fine structure as a result of the variegated position effect in Drosophila melanogaster. Genetica (USSR) 20:1846–1856

    Google Scholar 

  • Wargent JM, Hartmann-Goldstein IJ (1976) Replication behaviour and morphology of a rearranged chromosome region in Drosophila. In: Chromosomes today, vol 5. Pearson PL, Lewis KR (eds). John Wiley and Sons, New York, pp 109–116

    Google Scholar 

  • Zhimulev IF (1974) Comparative study of the function of polytene chromosomes in laboratory stocks of Drosophila melanogaster and the 1(3)tl mutant (lethal tumoraes larvae). I. Analysis of puffing patterns in autosomes of the laboratory stock BatumiL. Chromosoma 46:59–76

    Google Scholar 

  • Zhimulev IF, Semeshin VF, Kulichkov VA, Belyaeva ES (1982) Intercalary heterochromatin in Drosophila. I.Location and general characteristics. Chromosoma 87:197–228

    Google Scholar 

  • Zhimulev IF, Belyaeva ES, Fomina OV, Protopopov MO, Bolshakov VN (1986) Cytogenetic and molecular aspects of position effect variegation in Drosophila melanogaster. I. Morphology and genetic activity of the 2AB region in chromosome rearrangement T(1;2)dorvar7. Chromosoma 94:492–504

    Google Scholar 

  • Zhimulev IF, Belyaeva ES, Bgatov AV, Baricheva EM, Vlassova IE (1988) Cytogenetic and molecular aspects of position effect variegation in Drosophila melanogaster. II. Peculiarities of morphology and genetic activity of the 2B region in the T(1;2)dorvar7 chromosome in males. Chromosoma 96:255–261

    Google Scholar 

  • Zukerkandl E (1974) Recherches sur les propriétés et l'activité biologique de la chromatine. Biochimie 56:937–954

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhimulev, I.F., Belyaeva, E.S., Bolshakov, V.N. et al. Position-effect variegation and intercalary heterochromatin: a comparative study. Chromosoma 98, 378–387 (1989). https://doi.org/10.1007/BF00292391

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292391

Keywords

Navigation