Skip to main content
Log in

Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The autotrophic carbon fixation pathway was studied in the thermophilic hydrogen oxidizing eubacterium Aquifex pyrophilus and in the thermophilic sulfur reducing archaebacterium Thermoproteus neutrophilus. Neither organism contained ribulose-1,5-bisphosphate carboxylase activity suggesting that the Calvin cycle is not operating. Rather, all enzymes of the reductive citric acid cycle were found in A. pyrophilus. In T. neutrophilus ATP citrate lyase activity was detected which has not been achieved so far; this finding corroborates earlier work suggesting the presence of the reductive citric acid cycle in this archaebacterium. The reductive citric acid cycle for autotrophic CO2 fixation now has been documented in the eubacterial branches of the proteobacteria, in green sulfur bacteria, and in the thermophilic Knallgas bacteria as well as in the branch of the sulfur dependent archaebacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antranikian G, Herzberg C, Gottschalk G (1982) Characterization of ATP citrate lyase from Chlorobium limicola. J Bacteriol 152: 1284–1287

    Google Scholar 

  • Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG Balows A, Schlegel HG (eds) The prokaryotes. vol I. Springer, Berlin Heidelberg New York, pp 873–874

    Google Scholar 

  • Bridger WA, Ramaley FF, Boyer PD (1969) Succinyl coenzyme A synthetase from Escherichia coli. In: Lowenstein JM (ed) Methods in Enzymology, vol XIII. Academic Press, New York London, p 70–75

    Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15: 352–356

    Google Scholar 

  • Cooper TG (1981) Biochemische Arbeitsmethoden. Walther de Gruyter, Berlin New York, pp 49–52

    Google Scholar 

  • Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) Data for biochemical research. 3rd edn. Oxford Science Publications, Clarendon Press, Oxford, p 491

    Google Scholar 

  • Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch Microbiol 132: 67–74

    Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12: 38–47

    Google Scholar 

  • Huber R, Wilharm T, Huber D, Tincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15: 340–351

    Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola form thiosulfatophilum. Arch Microbiol 128: 239–241

    Google Scholar 

  • Kandler O, Stetter KO (1981) Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway. Zbl Bakt Abt I hyg Orig C 2: 111–121

    Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1980) Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria. Agric Biol Chem 44: 1985–1986

    Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34: 5–10

    Google Scholar 

  • Quayle JR, Keech DB (1959) Carbon assimilation by Pseudomonas oxalaticus (OX 1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem J 72: 631–637

    Google Scholar 

  • Schäfer S, Barkowski C, Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146: 301–308

    Google Scholar 

  • Schäfer S, Götz M, Eisenreich W, Bacher A, Fuchs G (1989a) 13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus. Eur J Biochem 184: 151–156

    Google Scholar 

  • Schäfer S, Paalme T, Vilu R, Fuchs G (1989 b) 13C-NMR study of acetate assimilation in Thermoproteus neutrophilus. Eur J Biochem 186: 69–700

    Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148: 218–225

    Google Scholar 

  • Schauder R, Preuß A, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151: 84–89

    Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, hydrogen-oxidizing bacterium Hydrogenobacter thermophilus. Arch Microbiol 141: 198–203

    Google Scholar 

  • Stahl E (1967) Dünnschichtchromatographie. Ein Laboratoriumshandbuch. 2nd ed. Springer, Berlin Heidelberg New York, pp 621–624

    Google Scholar 

  • Strauss G, Fuchs G (1993) Enzymes of a novel CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem (in press)

  • Strauss G, Eisenreich W, Bacher A, Fuchs G (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfurreducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 205: 853–866

    Google Scholar 

  • Wood AP, Kelly DP, Norris PR (1987) Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 146: 382–389

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132: 604–613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beh, M., Strauss, G., Huber, R. et al. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus . Arch. Microbiol. 160, 306–311 (1993). https://doi.org/10.1007/BF00292082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292082

Key words

Navigation