Abstract
The autotrophic carbon fixation pathway was studied in the thermophilic hydrogen oxidizing eubacterium Aquifex pyrophilus and in the thermophilic sulfur reducing archaebacterium Thermoproteus neutrophilus. Neither organism contained ribulose-1,5-bisphosphate carboxylase activity suggesting that the Calvin cycle is not operating. Rather, all enzymes of the reductive citric acid cycle were found in A. pyrophilus. In T. neutrophilus ATP citrate lyase activity was detected which has not been achieved so far; this finding corroborates earlier work suggesting the presence of the reductive citric acid cycle in this archaebacterium. The reductive citric acid cycle for autotrophic CO2 fixation now has been documented in the eubacterial branches of the proteobacteria, in green sulfur bacteria, and in the thermophilic Knallgas bacteria as well as in the branch of the sulfur dependent archaebacteria.
Similar content being viewed by others
References
Antranikian G, Herzberg C, Gottschalk G (1982) Characterization of ATP citrate lyase from Chlorobium limicola. J Bacteriol 152: 1284–1287
Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG Balows A, Schlegel HG (eds) The prokaryotes. vol I. Springer, Berlin Heidelberg New York, pp 873–874
Bridger WA, Ramaley FF, Boyer PD (1969) Succinyl coenzyme A synthetase from Escherichia coli. In: Lowenstein JM (ed) Methods in Enzymology, vol XIII. Academic Press, New York London, p 70–75
Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15: 352–356
Cooper TG (1981) Biochemische Arbeitsmethoden. Walther de Gruyter, Berlin New York, pp 49–52
Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) Data for biochemical research. 3rd edn. Oxford Science Publications, Clarendon Press, Oxford, p 491
Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch Microbiol 132: 67–74
Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12: 38–47
Huber R, Wilharm T, Huber D, Tincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15: 340–351
Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola form thiosulfatophilum. Arch Microbiol 128: 239–241
Kandler O, Stetter KO (1981) Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway. Zbl Bakt Abt I hyg Orig C 2: 111–121
Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1980) Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria. Agric Biol Chem 44: 1985–1986
Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34: 5–10
Quayle JR, Keech DB (1959) Carbon assimilation by Pseudomonas oxalaticus (OX 1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem J 72: 631–637
Schäfer S, Barkowski C, Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146: 301–308
Schäfer S, Götz M, Eisenreich W, Bacher A, Fuchs G (1989a) 13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus. Eur J Biochem 184: 151–156
Schäfer S, Paalme T, Vilu R, Fuchs G (1989 b) 13C-NMR study of acetate assimilation in Thermoproteus neutrophilus. Eur J Biochem 186: 69–700
Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148: 218–225
Schauder R, Preuß A, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151: 84–89
Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, hydrogen-oxidizing bacterium Hydrogenobacter thermophilus. Arch Microbiol 141: 198–203
Stahl E (1967) Dünnschichtchromatographie. Ein Laboratoriumshandbuch. 2nd ed. Springer, Berlin Heidelberg New York, pp 621–624
Strauss G, Fuchs G (1993) Enzymes of a novel CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem (in press)
Strauss G, Eisenreich W, Bacher A, Fuchs G (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfurreducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 205: 853–866
Wood AP, Kelly DP, Norris PR (1987) Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 146: 382–389
Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132: 604–613
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Beh, M., Strauss, G., Huber, R. et al. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus . Arch. Microbiol. 160, 306–311 (1993). https://doi.org/10.1007/BF00292082
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00292082