Skip to main content
Log in

Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifU I SVW gene region: possible role of Nif W in homocitrate processing

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

DNA sequence analysis of a 3494-bp HindIII-Bc1I fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneurnoniae. In contrast to nifA andnifB which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifU ISVW operon, which is preceded by a putative σ54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifU I and nifW mutants as well as a nifU I/nifUII, double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifVNifW), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold W, Pühler A (1988) A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70:171–179

    Google Scholar 

  • Arnold W, Rump A, Klipp W, Priefer UB, Pühler A (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203:715–738

    Google Scholar 

  • Avtges P, Scolnik PA, Haselkorn R (1983) Genetic and physical map of the structural genes (nifH, D, K) coding for the nitrogenase complex of Rhodopseudomonas capsulata. J Bacteriol 156:251–256

    Google Scholar 

  • Berg J (1986) Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487

    Google Scholar 

  • Beynon J, Ally A, Cannon M, Cannon F, Jacobson M, Cash V, Dean D (1987) Comparative organization of nitrogen fixation-specific genes from Azotobacter vinelandii and Klebsiella pneumoniae: DNA sequence of the nifUSV genes. J Bacteriol 169:4024–4029

    Google Scholar 

  • Bishop PE, Joerger RD (1990) Genetics and molecular biology of alternative nitrogen fixation systems. Annu Rev Plant Physiol Plant Mol Biol 41:109–125

    Google Scholar 

  • Buck M, Miller S, Drummond M, Dixon R (1986) Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature (London) 320:374–378

    Google Scholar 

  • Burgess BK (1990) The iron-molybdenum cofactor of nitrogenase. Chem Rev 90:1377–1406

    Google Scholar 

  • Cannon W, Charlton W, Buck M (1991) Organization and function of binding sites for the transcriptional activator NifA in the Klebsiella pneumoniae nifE and nifU promoters. J Mol Biol 220:915–931

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Google Scholar 

  • Dilworth MJ, Eady RR, Eldridge ME (1988) The vanadium nitrogenase of Azotobacter chroococcum. Biochem J 249:745–751

    Google Scholar 

  • Dilworth MJ, Eady RR, Robson RL, Miller RW (1987) Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo. Nature (London) 327:167–168

    Google Scholar 

  • Evans DJ, Jones R, Woodley PR, Wilborn JR, Robson RL (1991) Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM gene cluster, including a new gene (nifP) which encodes a serine acetyltransferase. J Bacteriol 173:5457–5469

    Google Scholar 

  • Fonstein M, Zheng S, Haselkorn R (1992) Physical map of the genome of Rhodobacter capsulatus SB1003. J Bacteriol 174:4070–4077

    Google Scholar 

  • Foster-Hartnett D, Kranz RG (1992) Analysis of the promoters and upstream sequences of nifA1 and nifA2 in Rhodobacter capsulatus; activation requires ntrC but not rpoN. Mol Microbiol 6:1049–1060

    Google Scholar 

  • Gussin GN, Robson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591

    Google Scholar 

  • Hennecke H (1990) Nitrogen fixation genes involved in the Brady-rhizobium japonicum-soybean symbiosis. FEBS 268:422–426

    Google Scholar 

  • Hirsch PR, Beringer JE (1984) A physical map of pPH1JI and pJB4JI. Plasmid 12:139–141

    Google Scholar 

  • Hoover TR, Imperial J, Liang J, Ludden PW, Shah VK (1988a) Dinitrogenase with altered substrate specificity results from the use of homocitrate analogues for in vitro synthesis of the iron-molybdenum cofactor. Biochemistry 27:3647–3652

    Google Scholar 

  • Hoover TR, Imperial J, Ludden PW, Shah VK (1988b) Homocitrate cures the NifV phenotype in Klebsiella pneumoniae. J Bacteriol 170:1978–1979

    Google Scholar 

  • Hoover TR, Imperial J, Ludden PW, Shah VK (1989) Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry 28:2768–2771

    Google Scholar 

  • Hoover TR, Robertson AD, Cerny RL, Hayes RN, Imperial J, Shah VK, Ludden PW (1987) Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. Nature 329:855–857

    Google Scholar 

  • Imperial J, Ugalde RA, Shah VK, Brill WJ (1984) Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol 158:187–194

    Google Scholar 

  • Jacobson MR, Brigle KE, Bennett LT, Setterquist RA, Wilson MS, Cash VL, Beynon J, Newton WE, Dean DR (1989a) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027

    Google Scholar 

  • Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989b) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57

    Google Scholar 

  • Joerger RD, Bishop PE (1988) Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol 170:1475–1487

    Google Scholar 

  • Joerger RD, Jacobson MR, Bishop PE (1989) Two nifA-like genes required for expression of alternative nitrogenases by Azotobacter vinelandii. J Bacteriol 171:3258–3267

    Google Scholar 

  • Jones R, Haselkorn R (1989) The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues required for nitrogen fixation. Mol Gen Genet 215:507–516

    Google Scholar 

  • Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498

    Google Scholar 

  • Klipp W (1990) Organization and regulation of nitrogen fixation genes in Rhodobacter capsulatus. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: Achievements and objectives. Chapman and Hall, New York London, pp 467–474

    Google Scholar 

  • Klipp W, Masepohl B, Pühler A (1988) Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: duplication of a nifA-nifB region. J Bacteriol 170:693–699

    Google Scholar 

  • Kranz RG, Foster-Hartnett D (1990) Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors. Mol Microbiol 4:1793–1800

    Google Scholar 

  • Kranz RG, Haselkorn R (1985) Characterization of nif regulatory genes in Rhodopseudomonas capsulata using lac gene fusions. Gene 40:203–215

    Google Scholar 

  • Labes M, Pühler A, Simon R (1990) A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46

    Google Scholar 

  • Lehman LJ, Roberts GP (1991) Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J Bacteriol 173:5705–5711

    Google Scholar 

  • Liang J, Madden M, Shah VK, Burris RH (1990) Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae. Biochemistry 29:8577–8581

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Madden MS, Krezel AM, Allen RM, Ludden PW, Shah VK (1992) Plausible structure of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 89:6487–6491

    Google Scholar 

  • Madden MS, Paustian TD, Ludden PW, Shah VK (1991) Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in NifV mutants of Azotobacter vinelandii. J Bacteriol 173:5403–5405

    Google Scholar 

  • Masepohl B, Klipp W, Pühler A (1988) Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol Gen Genet 212:27–37

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • McLean PA, Dixon RA (1981) Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292:655–656

    Google Scholar 

  • Meijer WG, Tabita FR (1992) Isolation and characterization of the nifUSVW-rpoN gene cluster from Rhodobacter sphaeroides. J Bacteriol 174:3855–3866

    Google Scholar 

  • Merrick M, Filser M, Dixon R, Elmerich C, Sibold L, Houmard J (1980) The use of translocatable genetic elements to construct a fine-structure map of the Klebsiella pneumoniae nitrogen fixation (nif) gene cluster. J Gen Microbiol 117:509–520

    Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Moreno-Vivian C, Hennecke S, Pühler A, Klipp W (1989a) Open reading frame 5 (OAFS), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifH, nifX, and ORF4 in Rhodobacter capsulatus. J Bacteriol 171:2591–2598

    Google Scholar 

  • Moreno-Vivian C, Schmehl M, Masepohl B, Arnold W, Klipp W (1989b) DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor. Mol Gen Genet 216:353–363

    Google Scholar 

  • Morett E, Buck M (1989) In vivo studies on the interaction of RNA polymerase-σ54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. J Mol Biol 210:65–77

    Google Scholar 

  • Mulligan ME, Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC7120. J Biol Chem 264:19200–19207

    Google Scholar 

  • Paul W, Merrick M (1989) The roles of the nifW, nifZ and nifM genes of Klebsiella pneumoniae in nitrogenase biosynthesis. Eur J Biochem 178:675–682

    Google Scholar 

  • Preker P, Hübner P, Schmehl M, Klipp W, Bickle TA (1992) Mapping and characterization of the promoter elements of the regulatory nif genes rpoN, nifA1 and nifA2 in Rhodobacter capsulatus. Mol Microbiol 6:1035–1047

    Google Scholar 

  • Roberts GP, Brill WJ (1980) Gene-product relationships of the nif regulon of Klebsiella pneumoniae. J Bacteriol 144:210–216

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schneider K, Müller A, Schramm U, Klipp W (1991) Demonstration of a molybdenum- and vanadium-independent nitrogenase in a nifHDK deletion mutant of Rhodobacter capsulatus. Eur J Biochem 195:653–661

    Google Scholar 

  • Scott DJ, May HD, Newton WE, Brigle KE, Dean DR (1990) Role for the nitrogenase MoFe protein α-subunit in FeMo-cofactor binding and catalysis. Nature 343:188–190

    Google Scholar 

  • Shah VK, Hoover TR, Imperial J, Paustian TD, Roberts GP, Ludden PW (1988) Role of nif gene products and homocitrate in the biosynthesis of iron-molybdenum cofactor. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: Hundred years after. Gustav Fischer, Stuttgart, New York, pp 115–120

    Google Scholar 

  • Shah VK, Imperial J, Ugalde RA, Ludden PW, Brill WJ (1986) In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 83:1636–1640

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791

    Google Scholar 

  • Simon R, Quandt J, Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene 80:161–169

    Google Scholar 

  • Smith BE, Eady RR (1992) Metalloclusters of the nitrogenases. Eur J Biochem 205:1–15

    Google Scholar 

  • Stormo GD, Schneider TD, Gold LM (1982) Characterization of translational initiation sites in E. coli. Nucleic Acids Res 10:2971–2996

    Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Wall JD, Love J, Quinn SP (1984) Spontaneous Nif mutants of Rhodopseudomonas capsulata. J Bacteriol 159:652–657

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masepohl, B., Angermüller, S., Hennecke, S. et al. Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifU I SVW gene region: possible role of Nif W in homocitrate processing. Molec. Gen. Genet. 238, 369–382 (1993). https://doi.org/10.1007/BF00291996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291996

Key words

Navigation