Advertisement

Molecular and General Genetics MGG

, Volume 238, Issue 3, pp 325–332 | Cite as

Transcript identification in the optomotor-blind locus of Drosopbila melanogaster by intragenic recombination mapping and PCR-aided sequence analysis of lethal point mutations

  • Burkhard Poeck
  • Jürgen Balles
  • Gert O. Pflugfelder
Original Articles

Abstract

The optomotor-blind gene of Drosophila melanogaster is large and genetically complex. Five partly independent complementation groups are uncovered by several viable and lethal mutations at the locus. At least 15 RNA signals have been detected by Northern blot analysis. One of them, T3, derived from a 75 kb primary transcript, has been proposed as the carrier of optomotor-blind function, based on the large size of its precursor and its tissue distribution. We here provide direct evidence that T3 is the optomotor-blind transcript. A facile and generally applicable selection scheme for the isolation of intragenic meiotic recombinants was applied to map two lethal optomotor-blind point mutations to exons of the T3 transcript. Amplification of mutant DNA by the polymerase chain reaction (PCR) and sequencing of the amplified exons revealed the presence of mutations that lead to truncation of the T3 open reading frame. The recombination rate observed in the optomotor-blind locus is within the range of rates that have been determined in a few other Drosophila loci.

Key words

Drosophila melanogaster optomotor-blind Intragenic recombination Recombination rate Complex locus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M (1989) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  2. Banga SS, Bloomquist BT, Brodberg RK, Pye QN, Larrivee DC, Mason JM, Boyd JB, Pak WL (1986) Cytogenetic characterization of the 4BC region on the X chromosome of Drosophila melanogaster: Localization of the mei-9, norpA and omb genes. Chromosoma 93:341–346Google Scholar
  3. Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blind H31 J Neurogenet 3:87–109Google Scholar
  4. Begun DJ, Aquadro CF (1992) Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356:519–520Google Scholar
  5. Blondeau J, Heisenberg M (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wildtype and the mutant optomotor-blind H31. J Comp Physiol 145:321–329Google Scholar
  6. Brunner A, Wolf R, Pflugfelder GO, Poeck B, Heisenberg M (1992) Mutations in the proximal region of the optomotor-blind locus of Drosophila melanogaster reveal a gradient of neuroanatomical and behavioral phenotypes. J Neurogenet 8:43–55Google Scholar
  7. Cribbs DL, Pultz MA, Johnson D, Mazzulla M, Kaufman TC (1992) Structural complexity and evolutionary conservation of the Drosophila homeotic gene proboscipedia. EMBO J 11:1437–1449Google Scholar
  8. Doerig RE, Suter B, Gray M, Kubli E (1988) Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene. EMBO J 7:2579–2584Google Scholar
  9. Dynan WS (1989) Modularity in promoters and enhancers. Cell 58:1–4Google Scholar
  10. Fitzpatrick VD, Percival-Smith A, Ingles CJ, Krause HM (1992) Homeodomain-independent activity of the fushi tarazu polypeptide in Drosophila embryos. Nature 356:610–612Google Scholar
  11. Gray M, Charpentier A, Walsh K, Wu P, Bender W (1991) Mapping point mutations in the Drosophila rosy locus using denaturing gradient gel blots. Genetics 127:139–149Google Scholar
  12. Heisenberg M, Wonneberger R, Wolf R (1978) optomotor-blind H31. — a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296Google Scholar
  13. Hilliker AJ, Clark SH, Chovnick A (1991) The effect of DNA sequence of polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster. Genetics 129:779–781Google Scholar
  14. Hultman T, Stahl S, Hornes E, Uhlen M (1989) Direct solid-phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res 17:4937–4946Google Scholar
  15. Isoda K, Roth S, Nüsslein-Volhard C (1992) The functional domains of the Drosophila morphogen dorsal: evidence from the analysis of mutants. Genes Dev 6:619–630Google Scholar
  16. Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86:9253–9257Google Scholar
  17. Kidd S, Lockett TJ, Young MW (1983) The Notch locus of Drosophila melanogaster. Cell 34:421–433Google Scholar
  18. Lindsley DL, Grell EH (1968) Genetic variation in Drosophila melanogaster. Carnegie Inst Wash Publ 627Google Scholar
  19. Lindsley DL, Zimm G (1987) The genome of Drosophila melanogaster. Part 3: Rearrangements. Drosophila Inf Serv 65Google Scholar
  20. Liu S, McLeod E, Jack J (1991) Four distinct regulatory regions of the cut locus and their effect on cell type specification in Drosophila. Genetics 127:151–159Google Scholar
  21. Morgan TH, Bridges CB (1916) Sex-linked inheritance in Drosophila. Carnegie Inst Wash Publ No 237Google Scholar
  22. Pastink A, Heemskerk E, Nivard MJM, van Vliet CJ, Vogel EW (1991) Mutational specificity of ethyl methansulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet 229:213–218Google Scholar
  23. Peifer M, Wieschaus E (1990) The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63:1167–1178Google Scholar
  24. Pflugfelder GO, Schwarz H, Roth, Poeck B, Sigl A, Kerscher S, Jonschker B, Pak WL, Heisenberg M (1990) Genetic and molecular characterization of the optomotor-blind gene locus in Drosophila melanogaster. Genetics 126:91–104Google Scholar
  25. Pflugfelder GO, Roth H, Poeck B, Kerscher S, Schwarz H, Jonschker B, Heisenberg M (1992a) The lethal(1)optomotor-blind gene of Drosophila melanogaster is a major organizer of optic lobe development: isolation and characterization of the gene. Proc Natl Acad Sci USA 89:1199–1203Google Scholar
  26. Pflugfelder GO, Roth H, Poeck B (1992b) A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem Biophys Res Commun 186:918–925Google Scholar
  27. Poeck B (1992) Untersuchungen zur Genetik und Expression im optomotor-blind (omb) Genlokus von Drosophila melanogaster. Dissertation, Universität WürzburgGoogle Scholar
  28. Poeck B, Hofbauer A, Pflugfelder G.O. (1993) Expression of the Drosophila optomotor-blind gene transcript in neuronal and glial cells of the developing nervous system. Development, in pressGoogle Scholar
  29. Ponticelli AS, Smith GR (1992) Chromosomal context dependence of a eukaryotic recombinational hot spot. Proc Nag Acad Sci USA 89:227–231Google Scholar
  30. Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335:683–689Google Scholar
  31. Shenkar R, Shen M, Arnheim N (1991) DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse Eβ meiotic recombination hot spot. Mol Cell Biol 11:1813–1819Google Scholar
  32. Thomas BJ, Rothstein R (1991) Sex, maps and imprinting. Cell 64:1–3Google Scholar
  33. Thompson PE (1959) New mutants. Drosophila Inf Serv 33:99Google Scholar
  34. Washburn T, O'Tousa JE (1992) Nonsense suppression of the major rhodopsin gene of Drosophila. Genetics 130:585–595Google Scholar
  35. Weinzierl R, Axton JM, Ghysen A, Akam M (1987) Ultrabithorax mutations in constant and variable regions of the protein coding sequence. Genes Dev 1:386–397Google Scholar
  36. Zachar Z, Bingham PM (1982) Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell 30:529–541Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Burkhard Poeck
    • 1
  • Jürgen Balles
    • 1
  • Gert O. Pflugfelder
    • 1
  1. 1.Theordor-Boveri-Institut (Biozentrum), Lehrstuhl für GenetikUniversität WürzburgWürzburgGermany

Personalised recommendations