Skip to main content
Log in

The magnetic compass mechanism of birds and its possible association with the shifting course directions of migrants

  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Summary

Many birds of the northern hemisphere shift their migratory course to more southerly directions when moving from northern to southern latitudes. Birds from Central Europe, for example, change their course from SW to S or from SE to S respectively (Fig. 1). This also seems to apply to some other animals.

The hypothesis presented here explains the observed shifts in migratory direction on the basis of changes in the parameters of the earth's magnetic field and hence would make a genetic fixation of shifts in the migratory direction unnecessary.

To determine the direction of migration birds do not refer to the polarity of the magnetic field but to its dip (=γ). According to the hypothesis presented here, the birds, however, do not refer to the direction of dip as previously believed but to the individual apparent angle of dip (=γ′), this angle changes depending on the heading of the bird (see Fig. 3 and Eq. 1). Maintaining a species specific or population specific γ′ the bird will move in its predetermined migratory direction. Changes in the dip of the earth's magnetic field correspond to changes in latitude. According to the hypothesis with γ′ fixed, the migratory direction will change when the dip changes. Given the hypothesis and the parameters of the earth's field theoretical migratory paths of birds between summer and winter quarters may be calculated (Figs. 8–11). The calculated tracks and the actually observed migratory routes agree well. This is also confirmed by radar and other observations of migratory directions in areas of different dip angles (Fig. 13). Displacing migrating birds to areas of smaller dip angles (= lower magnetic latitudes) results in predeterminable shifts in the birds migratory direction (Figs. 5, 6). The hypothesis also accounts for the so far unexplained orientation behaviour of transequatorial migrants under the magnetic equator.

A very simple model of this hypothetical compass mechanism may be based on the assumption of the sensor axis is supposed to correspond to the apparent angle of dip when moving in the migratory direction. In this position the difference between the apparent angle of dip and the angle of the sensor is zero. Any change in the direction of movement, however, will result in a difference leading to a response of an assumed receptor. When maintaining the zero difference the bird invariably sticks to its migratory course. The proposed mechanism is a null instrument unaffected by changes in field intensity and not depending on the measurement of absolute values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen WH (1948) Bird migration and magnetic meridians. Science 108:708

    Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London New York

    Google Scholar 

  • Beck W (1984) Der Einfluß des Magnetfeldes auf den Zugverlauf des Trauerschnäppers. In: Varju, Schnitzler (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Becker G, Speck U (1964) Untersuchungen über die Magnetfeldorientierung von Dipteren. Z Vergl Physiol 49:301–340

    Google Scholar 

  • Berthold P, Gwinner E, Klein H, Westrich P (1972) Beziehungen zwischen Zugunruhe und Zugablauf bei Gartengrasmücke und Mönchsgrasmücke (Sylvia borin und S. atricapilla). Z Tierpsychol 30:26–35

    Google Scholar 

  • Bookman M (1978) Sensitivity of the homing pigeon to an earthstrength magnetic field. Nature 267:340–342

    Google Scholar 

  • Casement MB (1966) Migration across the Mediterrenean observed by radar. Ibis 108:461–491

    Google Scholar 

  • Chapin JP (1932) The birds of the Belgish Congo, part I. Bull Am Mus Nat Hist 65:1–756

    Google Scholar 

  • Curry-Lindhal K (1981) Bird migration in Africa, vol 2. Academic Press, London New York

    Google Scholar 

  • Defense Mapping Agency Hydrographic Center (1975) Charts of the earth's magnetic field

  • Dick WJ, Pienkowski MW, Waltner M, Minton CD (1976) Distribution and geographical origin of knot Calidris canutus wintering in Europe and Africa. Ardea 64:22–47

    Google Scholar 

  • Dobben WH van (1935) Vogeltrek over Nederland II. Org Club Ned Vogelkd 7:143–158

    Google Scholar 

  • Dobben WH van (1936) Vogeltrek over Nederland III. Org Club Ned Vogelkd 8:91–107

    Google Scholar 

  • Dobben WH van, Makkingk GF (1934) Vogeltrek over Nederland I. Org Club Ned Vogelkd 6:87–102

    Google Scholar 

  • Dorst J (1961) The migrations of birds. Heinemann, London

    Google Scholar 

  • Emlen S (1967) Migratory orientation in the indigo bunting, Passerina cyanea. Part I: The evidence for use of celestial cues. Auk 84:309–342. Part II: Mechanism of celestial orientation. Auk 84:463–489

    Google Scholar 

  • Emlen S (1970) The influence of magnetic information on the orientation of the indigo bunting, Passerina cyanea. Anim Behav 18:215–224

    Google Scholar 

  • Fliege G (1983) Das Zugverhaten des Stars in Mitteleuropa: Eine Analyse der Ringfunde. Dissertation, Univ Konstanz

  • Geyr von Schweppenburg H (1922) Zur Theorie des Vogelzuges. J Ornithol 70:361–385

    Google Scholar 

  • Geyr von Schweppenburg H (1926) Die Zugwege von Lanius senator, collurio und mitor. J Ornithol 74:388–404

    Google Scholar 

  • Gwinner E (1968) Artspezifische Muster der Zugunruhe bei Laubsängern und ihre mögliche Bedeutung für die Beendigung des Zuges im Winterquartier. Z Tierpsychol 25:843–853

    Google Scholar 

  • Gwinner E (1974) Eudogenous temporal control of migratory restlessness in warblers. Naturwissenschaften 61:405–406

    Google Scholar 

  • Gwinner E, Wiltschko W (1978) Endogenously controlled changes in the migratory direction of the garden warbler Sylvia borin. J Comp Physiol 125:267–273

    Google Scholar 

  • Kalmijn AJ (1978) Experimental evidence of geomagnetic orientation in elasmobranch fishes. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin Heidelberg New York, pp 347–355

    Google Scholar 

  • Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106

    Google Scholar 

  • Kiepenheuer J (1978a) Pigeon navigation and magnetic field. Naturwissenschaften 65:113–114

    Google Scholar 

  • Kiepenheuer J (1978b) Inversion of the magnetic field during transport: Its influence on the homing behavior of pigeons. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 135–142

    Google Scholar 

  • Kiepenheuer J (1980) The importance of outward journey information in the process of pigeon homing. Acta 17. Congr Int Ornithol, Berlin 1978, pp 593–598

    Google Scholar 

  • Kiepenheuer J (1982) The effect of magnetic anomalies on the homing behavior of pigeons: An attempt to analyse the problems involved In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 120–128

    Google Scholar 

  • Kiepenheuer J, Linsenmair KE (1965) Vogelzug an der nordafrikanischen Küste von Tunesien bis Rotes Meer nach Tagund Nachtbeobachtungen 1963 und 1964. Vogelwarte 23:80–94

    Google Scholar 

  • Klein HP, Berthold P, Gwinner E (1973) Der Zug europäischer Garten-und Mönchsgrasmücken (Sylvia borin, S. atricapilla). Vogelwarte 27:73–134

    Google Scholar 

  • Köhler KL (1978) Do pigeons use their eyes for navigation? Animal migration, navigation, and homing. Springer, Berlin Heidelberg Ney Work, pp 57–64

    Google Scholar 

  • Krätzig H, Schüz E (1936) Ergebnis der Versetzung ostbaltischer Stare ins Binnenland. Vogelzug 7:163–175

    Google Scholar 

  • Kramer G (1949) Über Richtungstendenzen bei der nächtlichen Zugunruhe gekäfigter Vögel. In: Mayr E, Schüz E (eds) Ornithologie als biologische Wissenschaft. Winter, Heidelberg, pp 269–283

    Google Scholar 

  • Kreithen ML, Keeton WT (1979) Attempts to condition homing pigeons to magnetic stimuli. J Comp Physiol 91:355–362

    Google Scholar 

  • Leaton BR (1965) JGRF charts (World magnetic survey). JAGA Bull 28:189–201

    Google Scholar 

  • Li KP, Wong HH, Woo WS (1964) Route of the seasonal migration of the oriental army worm moth in the eastern part of China. Acta Phytophyl Sin 3:101–110 (Rev in Rev Appl Entomol A 53:391)

    Google Scholar 

  • Lincoln C (1935) The migration of North American birds. US Dep Agric Circ 363:1–72

    Google Scholar 

  • Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z Vergl Physiol 60:219–243

    Google Scholar 

  • Lindauer M, Martin H (1972) Magnetic effect on dancing bees. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orient orientation and navigation. NASA, Washington, pp 559–567

    Google Scholar 

  • Lowery GH Jr, Newman RJ (1966) A continentwide view of bird migration on four nights in October. Auk 83:547–586

    Google Scholar 

  • Lukanus V (1922) Die Rätsel des Vogelzuges. Beyer, Langensalza

    Google Scholar 

  • Marshall AJ (1956) The breeding cycle of the short tailed shearwater in relation to transequatorial migration and its environment. Proc Zool Soc (Lond) 127:481–510

    Google Scholar 

  • Mayr E, Meise H (1930) Theoretisches zur Geschichte des Vogelzuges. Vogelzug 1:149–172

    Google Scholar 

  • McClure HE (1974) Migration and survival of the birds of Asia. SEATO, Bangkok

    Google Scholar 

  • Merkel FW, Fromme C (1958) Untersuchungen über das Orientierungsvermögen nächtlich ziehender Rotkehlchen, Erithacus rubecula. Naturwissenschaften 45:499–500

    Google Scholar 

  • Moreau RE (1961) Problems of Mediterranean-Saharan migration. Ibis 103:373–427, 580–623

    Google Scholar 

  • Moreau RE (1972) The Palaearctic-African bird migration systems, Head, London New York

    Google Scholar 

  • Nisbet ICT (1970) Autumn migration of the black poll warbler: evidence for long flight provided by regional survey. Bird Banding 41:207–240

    Google Scholar 

  • Olsson V (1958) Dispersal, migration, longevity and death causes of Strix uluco Buteo buteo, Ardea cinerea and Larus argentatus. Acta Vertebratica 1:91–189

    Google Scholar 

  • Perdeck AC (1958) Two types of orientation in migrating starlings Sturnus vulgaris L. and chaffinches, Fringilla coelebs L. as revealed by displacement experiments. Ardea 46:1–37

    Google Scholar 

  • Perdeck AC (1964) An experiment on the ending of autumn migration in starlings. Ardea 52:133–139

    Google Scholar 

  • Perdeck AC (1967) Orientation of starlings after displacement to Spain. Ardea 55:194–202

    Google Scholar 

  • Prater AJ (1980) Migration pattern of waders (Charidrii) in Europe. Acta 17. Congr Int Ornithol, Berlin 1978, pp 507–511

  • Rabøl J (1972) Displacement experiments with night migrating passerines (1970). Z Tierpsychol 30:14–25

    Google Scholar 

  • Ralph CJ (1975) Age ratios, orientation and routes of land migrants in the northeastern United States. D Sc thesis, John Hopkins University, Baltimore, Md

    Google Scholar 

  • Reille A (1968) Essai de mise en évidence d'une sensibilité du pigeon voyageur au champs magnétique a l'aide d'une conditionnement nociceptif. J Physiol (Paris) 60:85–92

    Google Scholar 

  • Richardson WJ (1980) Autumn landbird migration in the western Atlantic Ocean as evident from radar. Acta 17. Congr Int Ornithol, Berlin 1978, pp 501–506

  • Sauer F (1957) Die Sternorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin und curruca). Z Tierpsychol 14:29–70

    Google Scholar 

  • Schmidt-Koenig K (1979) Directions of migrating monarch butterflies (Danaus plexippus) in some parts of the eastern United States. Behav Proc 4:73–78

    Google Scholar 

  • Schüz E (1949) Die Spätauflassung ostpreussischer Jungstörche in Westdeutschland durch die Vogelwarte Rossitten 1933. Vogelwarte 15:63–78

    Google Scholar 

  • Schüz E (1950) Zur Frage der angeborenen Zugwege. Vogelwarte 15:219–226

    Google Scholar 

  • Schüz E (1971) Grundriß der Vogelzugskunde. Parey, Hamburg

    Google Scholar 

  • Schüz E, Weigold H (1931) Atlas des Vogelzuges nach den Beringungsergebnissen bei paläarktischen Vögeln. Abh Vogelwarte Helgoland, Berlin

    Google Scholar 

  • Semm P, Schneider T, Vollrath L, Witschko W (1982) Magnetic sensitive pineal cells in pigeons. In: Papi F, Walraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 329–337

    Google Scholar 

  • Stresemann E (1927) Die Wanderungen der Rotschwanzwürger (Formenkreis Lanius cristatus). J Ornithol 75:68–85

    Google Scholar 

  • Studer-Thiersch A (1969) Das Zugverhalten schweizerischer Stare nach Ringfunden. Ornithol Beob 66:105–144

    Google Scholar 

  • Tinbergen N (1947) Over de Trekwegen van Vinken (Fringilla coelebs L.). Ardea 30:42–73

    Google Scholar 

  • Urquhart FA, Urquhart NR (1978) Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus) in North America to the overwintering site in the Neovulcanic Plateau of Mexico. Can J Zool 56:1759–1764

    Google Scholar 

  • Walcott B, Walcott C (1982) A search for magnetic field receptors in animals. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 338–343

    Google Scholar 

  • Walcott C (1978) Anomalies in the earth's magnetic field increase the scatter of pigeon's vanishing bearings. In: Schmidt-Koenig K, Keeton, W (eds) Animal migration navigation and homing. Springer, Berlin Heidelberg New York, pp 143–151

    Google Scholar 

  • Walcott C, Green RP (1974) Orientation of homing pigeons altered by change in the direction of an applied magnetic field. Science 184:180–182

    Google Scholar 

  • Wallraff HG (1960) Does celestial navigation exist in animals? Cold Spring Harbor Symp Quant Biol 25:451–461

    Google Scholar 

  • Wallraff HG, Kiepenheuer J (1963) Migracion y orientacion en aves: observaciones en otoño en el sur-oeste de Europa. Ardeola 8:19–40

    Google Scholar 

  • Williams TC, Williams JM, Ireland LC, Teal JM (1977) Autumnal bird migration over the western north Atlantic ocean. Am Birds 31:251–267

    Google Scholar 

  • Wiltschko R, Wiltschko W (1978) Evidence for the use of outward journey information in homing pigeons. Naturwissenschaften 65:112–113

    Google Scholar 

  • Wiltschko W (1972) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z Tierpsychol 25:537–558

    Google Scholar 

  • Wiltschko W (1972) Magnetic compass of European robins. Science 176:62–64

    Google Scholar 

  • Wiltschko W (1974) Der Magnetkompaß der Gartengrasmücke (Sylvia borin). J Ornithol 115:1–7

    Google Scholar 

  • Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night migrating birds. J Comp Physiol 109:91–99

    Google Scholar 

  • Wolff WJ (1966) Migration of teal ringed in the Netherlands. Ardea 54:230–270

    Google Scholar 

  • Wolff WJ (1970) Goal orientation versus one direction orientation in the teal Anas c. crecca during autumn migration. Ardea 58:132–141

    Google Scholar 

  • Zink G (1980) Räumliche Zugmuster europäischer Zugvögel. Acta 17. Congr Int Ornithol, Berlin 1979, pp 512–516

  • Zink G (1973/75/81) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel, Bd 1–3. Vogelzug Verlag, Moggingen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiepenheuer, J. The magnetic compass mechanism of birds and its possible association with the shifting course directions of migrants. Behav Ecol Sociobiol 14, 81–99 (1984). https://doi.org/10.1007/BF00291900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291900

Keywords

Navigation