Advertisement

Archives of Microbiology

, Volume 155, Issue 1, pp 75–81 | Cite as

Polysulfide utilization by Thiocapsa roseopersicina

  • P. T. Visscher
  • J. W. Nijburg
  • H. van Gemerden
Original Papers

Abstract

The purple sulfur bacterium Thiocapsa roseopersicina, being the dominant anoxygenic phototroph in microbial mats, was tested for growth on polysulfide as the electron donor for carbon dioxide fixation. Data collected in continuous cultures revealed μmax to be 0.065 h-1 and the saturation affinity constant Ks to be 6.7 μM. The value of the inhibition constant Ki was estimated in batch cultures and was found to be approximately 1100 μM. When grown on monosulfide, the organism was capable of trisulfide utilization without lag. Monosulfide-limited growth was established to have a μmax of 0.091 h-1 and Ks of 8.0 μM. Field observations revealed polysulfide, present at supra-optimal concentrations, as a major pool of reduced sulfur in a laminated marine sediment ecosystem.

Key words

Polysulfide Monosulfide Electron-donor limited growth Continuous Culture Thiocapsa roseopersicina 

Non-standard abbreviations

DLP

Direct Linear Plot

TS

Total Sugar

SS

Structural Sugar

P

Protein

RR

concentration of growth limiting nutrient in reservoir vessel

Snutrient

residual concentration of growth-limiting nutrient in the culture vessel

Ssulfur compound

concentration of sulfur in the corresponding compound

D

dilution rate

μmax

maximum specific growth rate

Ks

saturation constant

Ki

inhibition constant

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenshtat Z, Stoler A, Cohen Y, Nielsen H (1983) The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar-Lake. In: Bjoroy M, Albrecht P, Cornford C, De Groot K, Eglinton G, Galimov E, Leythaeuser D, Pelet R, Rullkotter J, Speers G (eds) Advances in organic geochemistry 1981 Wiley, Chicester, pp 279–288Google Scholar
  2. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10: 707–723Google Scholar
  3. Beeftink HH, Van Gemerden H (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121: 161–167Google Scholar
  4. Belkin S, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49: 1057–1061Google Scholar
  5. Bertolacini RJ, BarneyII JE (1957) Colorimetric determination of sulfate with barium chloranilate. Anal Chem 29:281–283Google Scholar
  6. De Wit R, Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45:117–126Google Scholar
  7. De Wit R, Jonkers HM, Van den Ende FP, Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J Sea Res 23:271–281Google Scholar
  8. De Wit R, Van Gemerden H (1990) Growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73:69–76Google Scholar
  9. Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720Google Scholar
  10. Fairbairn NJ (1953) A modified anthrone reagent. Chem Ind 1953:86Google Scholar
  11. Feher F, Laue W (1956) Beiträge zur Chemie des Schwefels. XXIX. Über die Darstellung von Rohsulfanen. Z Anorg Allg Chem 288:103–112Google Scholar
  12. Kondratieva EN, Zhukov VG, Ivankovsky RN, Petushkova YuP, Monosov EZ (1976) The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 146:362–369Google Scholar
  13. Law JH, Slepecky RW (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36Google Scholar
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  15. LutherIII GW, Church TM (1988) Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Mar Chem 23:295–309Google Scholar
  16. Mas J, Van Gemerden H (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146:362–369Google Scholar
  17. Monod J (1942) Recherches sur la croissance des cultures bactériennes. Hermann, ParisGoogle Scholar
  18. Orion Inc (1979) Sulfide ion electrode, silver ion electrode model 96-16 Instruction Manual, Cambridge, MassGoogle Scholar
  19. Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola. PhD thesis, Universität Bonn, FRGGoogle Scholar
  20. Stal LJ, Van Gemerden H, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2:295–306Google Scholar
  21. Stal LJ, Van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125Google Scholar
  22. Steudel R, Holdt G, Visscher PT, Van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437Google Scholar
  23. Then J (1984) Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. PhD thesis Universität Bonn, FRGGoogle Scholar
  24. Then J, Trüper HG (1983) Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Arch Microbiol 135:254–258Google Scholar
  25. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek; J Microbiol Serol 30:225–238Google Scholar
  26. Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294Google Scholar
  27. Van Gemerden H, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119:135–143Google Scholar
  28. Van Gemerden H, Tughan CS, De Wit R, Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102Google Scholar
  29. Visscher PT, Van Gemerden H (1988) Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. In: Olsen JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 287–294Google Scholar
  30. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Arch Microbiol 129:395–400Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. T. Visscher
    • 1
  • J. W. Nijburg
    • 1
  • H. van Gemerden
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations