Archives of Microbiology

, Volume 155, Issue 1, pp 68–74 | Cite as

Anaerobic metabolism of resorcyclic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium

  • Claudia Kluge
  • Andreas Tschech
  • Georg Fuchs
Original Papers


The anaerobic metabolism of 2,4- and 2,6-dihydroxybenzoic acid (beta- and gamma-resorcyclic acid) and 1,3-benzenediol (resorcinol) was investigated in a fermenting coculture of a Clostridium sp. with a Campylobacter sp. (Tschech A and Schink B (1985) Arch Microbiol 143: 52–59) and in a newly isolated denitrifying gram-negative bacterium. The enzymes of this pathway were searched for and partly characterized in vitro. It is shown that resorcyclic acids are decarboxylated in both organisms by specific enzymes, 2,4- or 2,6-dihydroxybenzoic acid decarboxylase. In the fermenting bacterium, the aromatic product, 1,3-benzenediol, is reduced by 1,3-benzenediol (resorcinol) reductase to the non-aromatic 1,3-cyclohexanedione; the novel enzyme which catalyzes the two-electron-reduction of the aromatic nucleus is oxygen-sensitive and uses reduced methyl viologen as artificial electron donor. The cyclic dione is then hydrolytically cleaved to 5-oxocaproic acid by 1,3-cyclohexanedione hydrolase. The denitrifying bacterium did not metabolize 1,3-cyclohexanedione, and the enzymes metabolizing 1,3-benzenediol or 1,3-cyclohexanedione were not detected. It is concluded that two different pathways of anaerobic 1,3-benzenediol metabolism exist.

Key words

Aromatic compounds Resorcinol Resorcyclic acids 1,3-Benzenediol 1,3-Cyclohexanedione Resorcinol reductase 2,4-Dihydroxybenzoic acid decarboxylase 2,6-Dihydroxybenzoic acid decarboxylase 1,3-Cyclohexanedione hydrolase 5-Oxocaproic acid Clostridium Denitrifying Anaerobic aromatic metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balba MT, Evans WC (1980) The methanogenic biodegradation of catechol by a microbial consortium: evidence for the production of phenol through cis-benzenediol. Biochem Soc Trans 8: 452–453Google Scholar
  2. Beilstein (1967) Handbuch der organischen Chemie, vol 4, III, Ergänzungsband. Springer, Berlin Heidelberg New York, p 4293Google Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254Google Scholar
  4. Brune A, Schink B (1990) Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici. J Bacteriol 172: 1070–1076Google Scholar
  5. Brysch K, Schneider C, Fuchs G, Widdel F (1987) Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum. Arch Microbiol 148: 264–274Google Scholar
  6. Chapman PJ, Ribbons DW (1976a) Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida. J Bacteriol 125: 975–984Google Scholar
  7. Chapman PJ, Ribbons DW (1976b) Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol 125: 985–998Google Scholar
  8. Curzon G, Pratt RTC (1964) Origin of urinary resorcinol sulphate. Nature 204: 383–384Google Scholar
  9. Dangel W, Tschech A, Fuchs G (1989) Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species. Arch Microbiol 152: 273–279Google Scholar
  10. Grant DJW, Patel JC (1969) The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J Microbiol Serol A v Leeuwenhoek 35: 325–343Google Scholar
  11. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5: 123–127Google Scholar
  12. Groseclose EE, Ribbons DW (1981) Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii. J Bacteriol 146: 460–466Google Scholar
  13. Haddock JD, Ferry JG (1989) Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41. J Biol Chem 264: 4423–4427Google Scholar
  14. Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Secondary plant products. Springer, Berlin Heidelberg New York, pp 329–402Google Scholar
  15. Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144: 8–14Google Scholar
  16. Krumholz LR, Bryant MP (1988) Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. J Bacteriol 170: 2472–2479Google Scholar
  17. Krumholz LR, Crawford RL, Hemling ME, Bryant MP (1987) Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol 169: 1886–1890Google Scholar
  18. Laanbroek HJ, Kingma W, Veldkamp H (1977) Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol Lett 1: 99–102Google Scholar
  19. Mattoo BN (1959) On the complete dissociation of 2,4-dihydroxybenzoic (β-resorcyclic) acid. Z Phys Chem 22: 187–198Google Scholar
  20. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF (1975) A more reliable Gram staining technic for diagnosis of surgical infections. Am J Surg 130: 341–345Google Scholar
  21. Meek EG, Turnball JH, Willson W (1953) Alicyclic compounds. III. Ultra-violet absorption spectra, acidity, and ring fission of cyclohexane-1:3 diones. J Chem Soc London, Part III: 2891–2894Google Scholar
  22. Patel TR, Jure KG, Jones GA (1981) Catabolism of phloroglucinol by the rumen anaerobe Coprococcus. Appl Environ Microbiol 42: 1010–1017Google Scholar
  23. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288Google Scholar
  24. Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J MIcrobiol Methods 4: 303–306Google Scholar
  25. Rider BF, Mellon MG (1946) Colorimetric determination of nitrites. Ind Eng Chem Anal Ed 18: 96–99Google Scholar
  26. Samain E, Albagnac G, Dubourgier H-C (1986) Initial steps of catabolism of trihydroxybenzenes in Pelobacter acidigallici. Arch Microbiol 144: 242–244Google Scholar
  27. Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145: 162–172Google Scholar
  28. Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133: 195–201Google Scholar
  29. Schink B, Tschech A (1988) Fermentative degradation of aromatic compounds. In: Hagedorn SR, Hanson RS, Kunz DA (eds) Microbial metabolism and the carbon cycle. Harwood Academic Publishers, Chur London, pp 213–226Google Scholar
  30. Schnell S, Bak F, Pfennig N (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch Microbiol 152: 556–563Google Scholar
  31. Szewzyk U, Schink B (1989) Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. Arch Microbiol 151: 541–545Google Scholar
  32. Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonas. Arch Microbiol 148: 213–217Google Scholar
  33. Tschech A, Fuchs G (1989) Anaerobic degradation of phenol via carboxylation to 4-OH-benzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Arch Microbiol 152: 594–599Google Scholar
  34. Tschech A, Schink B (1985) Fermentative degradation of resorcinol and resorcyclic acids. Arch Microbiol 143: 52–59Google Scholar
  35. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfatreduzierender Bakterien. Diss. Universität GöttingenGoogle Scholar
  36. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129: 395–400Google Scholar
  37. Windholz M (1983) (ed) The Merck index 10th edn. Merck & Co, Rahway, NJ, USA, p 1176Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Claudia Kluge
    • 1
  • Andreas Tschech
    • 1
  • Georg Fuchs
    • 1
  1. 1.Abteilung Angewandte MikrobiologieUniversität UlmUlmFederal Republic of Germany

Personalised recommendations