Skip to main content
Log in

Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Enzyme measurements were carried out with crude cell-free extracts of the propionate oxidizing coculture of Syntrophobacter wolinii and Desulfovibrio G11. Using cell-free extracts of a pure culture of Desulfovibrio G11 as a blank, most of the enzymes involved in the methylmalonyl-CoA pathway for propionate oxidation, including a propionyl-CoA: oxaloacetate transcarboxylase, were demonstrated in S. wolinii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergsma J, Dongen MBM van, Konings WN (1982) Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur J Biochem 128:151–157

    Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and applications in the measurement of KM for H2 and formate uptake. Appl Environ Microbiol 55:1735–1741

    Google Scholar 

  • Boonstra J, Huttunen MT, Konings WN (1975) Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem 250:6792–6798

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Bryant MP (1979) Microbial methane production — theoretical aspects. J Anim Sci 48:193–201

    Google Scholar 

  • Buswell AM, Fina L, Müller H, Yahiro A (1951) Use of C14 in mechanism studies of methane fermentation. II. Propionic acid. J Am Chem Soc 73:1809–1811

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • Dixon GH, Kornberg HL (1959) Assay methods for key enzymes of the glyoxylate cycle. Biochem J 72:3p

    Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Tech 15:127–167

    Google Scholar 

  • Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670

    Google Scholar 

  • Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274

    Google Scholar 

  • Houwen FP, Cheng Guangsheng, Folkers GE, Heuvel WMJG van de, Dijkema C (1988) Pyruvate and fumarate conversion by a methanogenic propionate-oxidizing coculture. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anaerobic sludge; microbiology and technology. Pudoc, Wageningen, pp 62–70

    Google Scholar 

  • Houwen FP, Plokker J, Dijkema C, Stams AJM (1990) Syntrophic propionate oxidation. In: Belaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogn transfer. Plenum Press, New York, pp 281–289

    Google Scholar 

  • Jngermann K, Schön G (1974) Pyruvate formate lyase in Rhodosprillium rubrum Ha adapted to anaerobic dark conditions. Arch Microbiol 99:109–116

    Google Scholar 

  • Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    Google Scholar 

  • Koch ME, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414

    Google Scholar 

  • Kremer DR, Hansen TA (1988) Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol Lett 49:273–277

    Google Scholar 

  • Maeba P, Sanwal BD (1969) Phosphoenolpyruvate carboxylase from Salmonella typhimurium, strain LT2. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press, New York London, pp 283–288

    Google Scholar 

  • Mah RA, Xun LY, Boone DR, Arhing B, Smith PH, Wilkie A (1990) Methanogenesis from propionate in sludge and enrichment cultures. In: Belaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York, pp 99–111

    Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

    Google Scholar 

  • Rabin R, Reeves HC, Wegener WS, Megraw RE, Ajl SJ (1965) Glyoxylate in fatty-acid metabolism. Condensations of glyoxylate with fatty acids lead to alternate pathways of fatty-acid metabolism. Science 150:1548–1558

    Google Scholar 

  • Robbins JE (1988) A proposed pathway for catabolism of propionate in methanogenic cocultures. Appl Environ Microbiol 54:1300–1301

    Google Scholar 

  • Schink B (1985) Mechanisms and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650

    Google Scholar 

  • Scrutton MC, Olmsted MR, Utter MF (1969) Pyruvate carboxylase from chicken liver. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press, New York London, pp 235–249

    Google Scholar 

  • Stams AJM, Veenhuis M, Weenk GH, Hansen TA (1983) Occurence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus. Arch Microbiol 136:54–59

    Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Google Scholar 

  • Wegener WS, Reeves HC, Rabin R, Ajl SJ (1968) Alternate pathways of metabolism of short-chain fatty acids. Bacteriol Rev 32:1–26

    Google Scholar 

  • Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (ed) Water pollution microbiology, vol 2. Wiley, New York, pp 349–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houwen, F.P., Plokker, J., Stams, A.J.M. et al. Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii . Arch. Microbiol. 155, 52–55 (1990). https://doi.org/10.1007/BF00291274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291274

Key words

Navigation