Advertisement

Archives of Microbiology

, Volume 155, Issue 1, pp 52–55 | Cite as

Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii

  • Frans P. Houwen
  • Jeannette Plokker
  • Alfons J. M. Stams
  • Alexander J. B. Zehnder
Original Papers

Abstract

Enzyme measurements were carried out with crude cell-free extracts of the propionate oxidizing coculture of Syntrophobacter wolinii and Desulfovibrio G11. Using cell-free extracts of a pure culture of Desulfovibrio G11 as a blank, most of the enzymes involved in the methylmalonyl-CoA pathway for propionate oxidation, including a propionyl-CoA: oxaloacetate transcarboxylase, were demonstrated in S. wolinii.

Key words

Syntrophobacter wolinii Propionate oxidation Syntrophic coculture Propionyl-CoA: oxaloacetate transcarboxylase Methylmalonyl-CoA pathway Desulfovibrio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergsma J, Dongen MBM van, Konings WN (1982) Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur J Biochem 128:151–157Google Scholar
  2. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632Google Scholar
  3. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and applications in the measurement of KM for H2 and formate uptake. Appl Environ Microbiol 55:1735–1741Google Scholar
  4. Boonstra J, Huttunen MT, Konings WN (1975) Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem 250:6792–6798Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. Bryant MP (1979) Microbial methane production — theoretical aspects. J Anim Sci 48:193–201Google Scholar
  7. Buswell AM, Fina L, Müller H, Yahiro A (1951) Use of C14 in mechanism studies of methane fermentation. II. Propionic acid. J Am Chem Soc 73:1809–1811Google Scholar
  8. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126Google Scholar
  9. Dixon GH, Kornberg HL (1959) Assay methods for key enzymes of the glyoxylate cycle. Biochem J 72:3pGoogle Scholar
  10. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Tech 15:127–167Google Scholar
  11. Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670Google Scholar
  12. Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274Google Scholar
  13. Houwen FP, Cheng Guangsheng, Folkers GE, Heuvel WMJG van de, Dijkema C (1988) Pyruvate and fumarate conversion by a methanogenic propionate-oxidizing coculture. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anaerobic sludge; microbiology and technology. Pudoc, Wageningen, pp 62–70Google Scholar
  14. Houwen FP, Plokker J, Dijkema C, Stams AJM (1990) Syntrophic propionate oxidation. In: Belaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogn transfer. Plenum Press, New York, pp 281–289Google Scholar
  15. Jngermann K, Schön G (1974) Pyruvate formate lyase in Rhodosprillium rubrum Ha adapted to anaerobic dark conditions. Arch Microbiol 99:109–116Google Scholar
  16. Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7Google Scholar
  17. Koch ME, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414Google Scholar
  18. Kremer DR, Hansen TA (1988) Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol Lett 49:273–277Google Scholar
  19. Maeba P, Sanwal BD (1969) Phosphoenolpyruvate carboxylase from Salmonella typhimurium, strain LT2. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press, New York London, pp 283–288Google Scholar
  20. Mah RA, Xun LY, Boone DR, Arhing B, Smith PH, Wilkie A (1990) Methanogenesis from propionate in sludge and enrichment cultures. In: Belaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York, pp 99–111Google Scholar
  21. Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128:248–252Google Scholar
  22. Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169Google Scholar
  23. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256Google Scholar
  24. Rabin R, Reeves HC, Wegener WS, Megraw RE, Ajl SJ (1965) Glyoxylate in fatty-acid metabolism. Condensations of glyoxylate with fatty acids lead to alternate pathways of fatty-acid metabolism. Science 150:1548–1558Google Scholar
  25. Robbins JE (1988) A proposed pathway for catabolism of propionate in methanogenic cocultures. Appl Environ Microbiol 54:1300–1301Google Scholar
  26. Schink B (1985) Mechanisms and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650Google Scholar
  27. Scrutton MC, Olmsted MR, Utter MF (1969) Pyruvate carboxylase from chicken liver. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press, New York London, pp 235–249Google Scholar
  28. Stams AJM, Veenhuis M, Weenk GH, Hansen TA (1983) Occurence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus. Arch Microbiol 136:54–59Google Scholar
  29. Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173Google Scholar
  30. Wegener WS, Reeves HC, Rabin R, Ajl SJ (1968) Alternate pathways of metabolism of short-chain fatty acids. Bacteriol Rev 32:1–26Google Scholar
  31. Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (ed) Water pollution microbiology, vol 2. Wiley, New York, pp 349–376Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Frans P. Houwen
    • 1
  • Jeannette Plokker
    • 1
  • Alfons J. M. Stams
    • 1
  • Alexander J. B. Zehnder
    • 1
  1. 1.Department of MicrobiologyAgricultural University of WageningenWageningenThe Netherlands

Personalised recommendations