Archives of Microbiology

, Volume 155, Issue 1, pp 46–51 | Cite as

Propionate acts as carboxylic group acceptor in aspartate fermentation by Propionibacterium freudenreichii

  • Bettina Rosner
  • Bernhard Schink
Original Papers


Cells of Propionibacterium freudenreichii ssp. shermanii and ssp. freudenreichii did not show significant growth or product formation in a mineral medium with 10 mM aspartate or 10 mM fumarate, vitamins, and a small amount (0.05% w/v) of yeast extract. In the presence of added propionate, growth with aspartate or fumarate was possible, and depended strictly on the amount of propionate provided, according to the equation: 3 aspartate + propionate → 3 succinate + acetate + CO2+3 NH3. Cocultures of P. freudenreichii with the succinate-decarboxylating strain Ft2 converted 3 aspartate stoichiometrically to acetate and 2 propionate. High activity of methylmalonyl-CoA: pyruvate transcarboxylase, and lack of methylmalonyl-CoA decarboxylase and oxaloacetate decarboxylase activity in cell-free extracts of aspartate-grown cells indicated that failure to use aspartate as sole substrate was due to the inability of these strains to catalyze a net decarboxylation of C4-dicarboxylic acids.

Key words

Aspartate fermentation Transcarboxylase Decarboxylases Anaerobic cocultures Propionate fermentation Succinate fermentation Propionibacterium freudenreichii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmeyer HU (1974) Methoden der enzymatischen Analyse, 3 edn. Verlag Chemie, WeinheimGoogle Scholar
  2. Bonartseva GA, Krainova OA, Vorob'eva LJ (1973) Pathways of terminal oxidation in propionic acid bacteria. Mikrobiologija (Russ) 42:583–588; Microbiology (Engl) 42:520–525Google Scholar
  3. Boonstra J, Huttunen MT, Konings WM, Kaback HR (1975) Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem 250:6792–6798Google Scholar
  4. Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. I. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229Google Scholar
  5. Crow VL (1986) Metabolism of aspartate by Propionibacterium freudenreichii subsp. shermanii: effect on lactate fermentation. Appl Environ Microbiol 52:359–365Google Scholar
  6. Crow VL (1987) Citrate cycle intermediates in the metabolism of aspartate and lactate by Propionibacterium freudenreichii subsp. shermanii. Appl Environ Microbiol 53:2600–2602Google Scholar
  7. Dehning I, Schink B (1989) Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433Google Scholar
  8. Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426Google Scholar
  9. Delwiche EA, Carson SF (1953) A citric acid cycle in Propionibacterium pentosaceum. J Bacteriol 65:318–321Google Scholar
  10. Denger K, Schink B (1990) New motile anaerobic bacteria growing by succinate decarboxylation to propionate. Arch Microbiol 154:550–555Google Scholar
  11. Dimroth P (1981) Characterization of a membrane-bound biotincontaining enzyme: oxaloacetate decarboxylase from Klebsiella aerogenes. Eur J Biochem 115:353–358Google Scholar
  12. Fieser L, Fieser M (1976) Organische Chemie, Verlag Chemie, WeinheimGoogle Scholar
  13. Hilpert W, Dimroth P (1982) Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient. Nature 296:584–585Google Scholar
  14. Hilpert W, Dimroth P (1983) Purification and characterization of a new sodium-transport decarboxylase. Methylmalonyl-CoA decarboxylase from Veillonella alcalescens. Eur J Biochem 132:579–587Google Scholar
  15. Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670Google Scholar
  16. Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 4:269–274Google Scholar
  17. Kröger A (1974) Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim Biophys Acta 347:273–289Google Scholar
  18. Reed LJ, Mukherjee BB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press, New York, pp 55–61Google Scholar
  19. Scheifinger CC, Wolin MJ (1973) Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol 26:789–795Google Scholar
  20. Schink B (1988) Konservierung kleiner Energiebeträge bei gärenden Bakterien. In: Präve P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Jahrbuch Biotechnologie, vol 2. C Hanser, München Wien, pp 65–93Google Scholar
  21. Schink B, Pfennig N (1982) Propionigenium modestum gen. nov. sp. nov., a new strictly anaerobic, nonsporing bacterium growing on succinate. Arch Microbiol 133:209–216Google Scholar
  22. Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathways of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173Google Scholar
  23. Stouthamer AH (1980) Electron transport linked phosphorylation in anaerobes. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. Gustav Fischer, Stuttgart, pp 17–29Google Scholar
  24. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  25. Yousten AA, Delwiche EA (1961) Biotin and vitamin B12 coenzymes in succinate decarboxylation by Propionibacterium pentosaceum and Veillonella alcalescens. Bacteriol Proc 61:175Google Scholar
  26. Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III> Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294Google Scholar
  27. Wood HG (1981) Metabolic cycles in the fermentation by propionic acid bacteria. Curr Top Cell Regul 18:255–287Google Scholar
  28. Zamenhoff S (1957) Preparation and assay of desoxyribonucleic acid from animal tissue. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 3. Academic Press, New York, pp 696–704Google Scholar
  29. Zindel U, Freudenberg W, Rieth M, Andreesen HR, Schnell J, Widdel F (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch Microbiol 150:254–266Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Bettina Rosner
    • 1
  • Bernhard Schink
    • 1
  1. 1.Lehrstuhl Mikrobiologie I der Eberhard-Karls-UniversitätTübingenFederal Republic of Germany

Personalised recommendations