Skip to main content
Log in

Assignment of the human fast skeletal muscle myosin alkali light chains gene (MLC1F/MLC3F) to 2q 32.1-2qter

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A DNA probe derived from a mouse intronless pseudogene including coding regions for the myosin fast skeletal muscle alkali light chains, MLC1F/MLC3F (suggested HGM symbol, MYL1), was tested on a panel of 25 independent man-rodent somatic cell hybrids in order to assign the human MLC1F/MLC3F gene to a human chromosome. A 3.7-kb TaqI human fragment was found to correlate with the presence of chromosome 2 in the hybrids, characterized both by cytogenetic analysis and reference enzyme markers. A regional assignment to 2q32.1-qter was possible using hybrids whose human parental strains bore a reciprocal translocation t(X;2) (p22;q32.1). The fact that IDH1 and the MLC1F/MLC3F gene are closely linked on chromosome 1 in the mouse and map to the same region of human chromosome 2 in man indicates, that these chromosomes have a conserved region of homology between them and that the human 3.7-kb TaqI fragment corresponds indeed to a functional gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • d'Albis A, Pantaloni C, Bechet JJ (1979) An electrophoretic study of native myosin isozymes and of their subunit content. Eur J Biochem 99:261–272

    Google Scholar 

  • Barton PJR, Buckingham ME (1985) The myosin alkali light chain proteins and their genes. Review article. Biochem J 231:249–261

    Google Scholar 

  • Barton PJR, Cohn A, Robert B, Fiszman MY, Bonhomme F, Guenet JL, Leader DP, Buckingham M (1985a) The myosin alkali-light chains of mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem 260: 8578–8584

    Google Scholar 

  • Barton PJR, Robert B, Fiszman MY, Leader DP, Buckingham ME (1985b) The same alkali myosin light chain gene is expressed in adult cardial atria and in foetal skeletal muscle. J Muscle Res Cell Motil 6:461–475

    Google Scholar 

  • Czosnek H, Nudel U, Shani M, Barker PE, Pravtcheva DD, Ruddle FH, Yaffé D (1982) The genes coding for the muscle contracting proteins, myosin heavy chain, myosin light chain 2, and skeletal muscle actin are located on three different mouse chromosomes. EMBO J 1:1299–1305

    Google Scholar 

  • Dutrillaux B, Lejeune J (1971) Sur une nouvelle technique d'analyse du caryotype humain. CR Acad Sci (Paris) 272:2638–2640

    Google Scholar 

  • Edwards YH, Parkar M, Povey S, West LF, Parrington JM, Solomon E (1985) Human myosin heavy chain genes assigned to chromosome 17 using a human cDNA clone as probe. Ann Hum Genet 49:101–109

    Google Scholar 

  • Fox MF, Du Toit DC, Warnick L, Retief AE (1984) Regional localization of alpha-galactosidase (GLA) to Xpter-Xq22, hexosaminidase B (HEXB) to 5q13-qter, and arylsulfatase B (ARSB) to 5pter-q13 Cytogenet Cell Genet 38:298–307

    Google Scholar 

  • Gross MS, Weil D, Nguyen Van Cong, Finaz C, Jegou-Foubert C, Cochet C, Parisi I, Grouchy J de, Frezal J (1982) Localisation du gène de la ribulose-5-phosphate-3-epimerase (RPE) sur le segment 2q32-2qter par hybridation cellulaire interspécifique. Ann Génét (Paris) 25:87–91

    Google Scholar 

  • Gunning P, Ponte Ph, Kedes L, Eddy R, Shows T (1984) Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc Natl Acad Sci USA 81:1813–1817

    Google Scholar 

  • Hamerton JL (1975) Report of the Committee on the Genetic Constitution of Chromosomes 1 and 2 (HGM3). Cytogenet Cell Genet 16:7–23

    Google Scholar 

  • Hors-Cayla MC, Junien C, Heuertz S, Mattei JF, Frezal J (1981) Regional assignment of arylsulfatase A, mitochondrial aconitase, and NADH-cytochrome b5 reductase by somatic cell hybridization. Hum Genet 58:140–143

    Google Scholar 

  • Hoh JFY (1978) Light chain distribution of chicken skeletal muscle myosin isoenzymes. FEBS Lett 90:297–300

    Google Scholar 

  • Human Gene Mapping 8 (1985) 8th International Workshop on Human Gene Mapping. Cytogenet Cell Genet 40:71

    Google Scholar 

  • Leinwand LA, Fournier REK, Nadal-Girard B, Shows T (1983) Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221: 766–769

    Google Scholar 

  • Lowey S, Benfield PA, Silberstein L, Lang LM (1979) Distribution of light chains in fast skeletal myosin. Nature 282:522–524

    Google Scholar 

  • Meera Khan P (1971) Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man-mouse and man-Chinese hamster somatic cell hybrids. Arch Biochem Biophys 145:470–483

    Google Scholar 

  • Mooseker MS (1985) Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Ann Rev Cell Biol 1:261–293

    Google Scholar 

  • Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, Ogata K (1984) Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308:333–338

    Google Scholar 

  • Nguyen Van Cong, Weil D, Finaz C, Cohen-Haguenauer O, Gross MS, Jegou-Foubert C, Tand MF de, Cochet C, Grouchy J de, Frezal J (1986) Panel of twenty-five independent man-rodent hybrids for human genetic marker mapping. Ann Génét (Paris) 29:20–26

    Google Scholar 

  • Okamoto Y, Sekine T, Grammer J, Yount RG (1986) The essential light chains constitute part of the active site of smooth muscle myosin. Nature 324:78–80

    Google Scholar 

  • Pai GS, Sprenkle JA, Do TT, Mareni CE, Migeon BR (1980) Localization of loci for hypoxanthine phosphoribosyl transferase and glucose-6-phosphate dehydrogenase and biochemical evidence of non random X chromosome expression from studies of a human X-autosome translocation. Proc Natl Acad Sci USA 77:2810–2813

    Google Scholar 

  • Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Girard B (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem 259: 13595–13604

    Google Scholar 

  • Pringault E, Arpin M, Garcia A, Finidori J, Louvard D (1986) A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J 5:3119–3124

    Google Scholar 

  • Rappold GA, Vosberg HP (1983) Chromosomal localization of human myosin heavy chain gene by in situ hybridization. Hum Genet 65:195–197

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Google Scholar 

  • Robert B, Daubas Ph, Akimento MA, Cohen A, Garner I, Guenet JL, Buckingham ME (1984) A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129–140

    Google Scholar 

  • Robert B, Barton PJR, Minty A, Daubas Ph, Weydert A, Bonhomme F, Catalan J, Chazottes D, Guenet JL, Buckingham M (1985) Investigation of genetic linkage between myosin and actin genes using an interspecific mouse back-cross. Nature 314:181–183

    Google Scholar 

  • Sivaramakrishnan M, Burke M (1982) The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity. J Biol Chem 257:1102–1105

    Google Scholar 

  • Southern EM (1985) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Spencer N, Hopkinson DA (1970) Biochemical genetics of the pentose phosphate cycle: human ribose-5-phosphate isomerase (RPI) and ribose-5-phosphate-3-epimerase (RPE). Ann Hum Genet 43:335–342

    Google Scholar 

  • Squire J (1981) The structural basis of muscular contraction. Plenum Press, New York

    Google Scholar 

  • Van Someren H, Beijersbergen Van Henegouven H, Los W, Wurzer-Figurelli E, Doppert B, Verloet M, Meera-Khan P (1974) Zymogram patterns in man-Chinese hamster somatic cell hybrids. Hum Genet 25:189–201

    Google Scholar 

  • Wagner PD, Giniger E (1981) Hydrolysis of ATP and reversible binding to F actin by myosin heavy chains free of all light chains. Nature 292:560–562

    Google Scholar 

  • Weil D, Nguyen Van Cong, Finaz C, Rebourcet R, Cochet C, Grouchy J de, Frezal J (1977) Localisation regionale des gènes humains IDHs, MDHs, PGK,-GAL, G6PD par l'hybridation cellulaire interspécifique. Hum Genet 36:205–211

    Google Scholar 

  • Weydert A, Daubas P, Lazaridis I, Barton P, Garner I, Leader DP, Bonhomme F, Catalan F, Simon D, Guenet JL, Gros F, Buckingham M (1985) Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as cardiac myosin heavy chain gene. Proc Natl Acad Sci USA 82:7183–7187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Haguenauer, O., Barton, P.J.R., Nguyen Van Cong et al. Assignment of the human fast skeletal muscle myosin alkali light chains gene (MLC1F/MLC3F) to 2q 32.1-2qter. Hum Genet 78, 65–70 (1988). https://doi.org/10.1007/BF00291237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291237

Keywords

Navigation