Archives of Microbiology

, Volume 156, Issue 2, pp 129–134 | Cite as

Oxygen tension regulated expression of the hemA gene of Rhodobacter capsulatus

  • Ulrike Hornberger
  • Beate Wieseler
  • Gerhart Drews
Original Papers


The promoter of the Rhodobacter capsulatus hemA gene, coding for the enzyme δ-aminolevulinic acid synthase (ALAS), was identified by trans-complementation of a δ-aminolevulinic acid (ALA)-dependent mutant and found to be located within a 170 bp region proximal to the hemA gene. The activity of the hemA promoter was demonstrated by lacZ fusion and in vitro transcription-translation. An open reading frame (ORFX) was found downstream of hemA. The activity of the hemA promoter, but not that of the ORFX promoter, increased when oxygen tension was lowered in the culture. Deletions upstream of the hemA promoter region did not affect ALAS activity and formation of pigment-protein complexes in R. capsulatus.

Key words

δ-Aminolevulinic acid synthase Bacteriochlorophyll Promoter activity Oxygen regulation Rhodobacter capsulatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong GA, Alberti M, Leach F, Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216: 254–268CrossRefGoogle Scholar
  2. Avissar YJ, Ormerod JG, Beale SI (1989) Distribution of δ-aminolevulinte acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151: 513–519CrossRefGoogle Scholar
  3. Bauer CE, Young DA, Marrs BL (1988) Analysis of the Rhodobacter capsulatus puf operon. Location of the oxygen-regulated promoter region and the identification of an additional puf-encoded gene. J Biol Chem. 263: 4820–4827PubMedGoogle Scholar
  4. Biel AJ, Marrs BL (1983) Transcriptional regulation of several genes for bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata in response to oxygen. J Bacteriol 156: 686–694PubMedPubMedCentralGoogle Scholar
  5. Burnham BF (1970) δ-Aminolevulinic acid synthase. Methods Enzymol 17: 195–204CrossRefGoogle Scholar
  6. Clark WG, Davidson E, Marrs BL (1984) Variation of levels of mRNA coding for antenna and reaction center polypeptides in Rhodopseudomonas capsulata in response to changes in oxygen concentration. J Bacteriol 157: 945–948PubMedPubMedCentralGoogle Scholar
  7. Clayton RK (1966) Spectroscopy of bacteriochlorophyll. Photochem Photobiol 5: 807–821CrossRefGoogle Scholar
  8. Clément-Métral JB (1986) Regulation of Ala-synthetase by O2 and thioredoxin system. In: Holmgren A, Brändén C-I, Jörnvall H, Sjöberg B-M (eds) Thioredoxin and glutaredoxin systems, structure and function. Raven Press, New York, pp 275–284Google Scholar
  9. Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang X-W, Finlay DR, Guiney D, Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153CrossRefGoogle Scholar
  10. Drews G (1983) Mikrobiologisches Praktikum. Springer, Berlin Heidelberg New York, p 62CrossRefGoogle Scholar
  11. Drews G (1988) Effect of oxygen partial pressure on formation of the bacterial photosynthetic apparatus. In: Acker H (ed) Oxygen sensing in tissues. Springer, Berlin Heidelberg New York, pp 3–11CrossRefGoogle Scholar
  12. Garcia AF, Venturoli G, Gad'on N, Fernández-Velasco JG, Melandri BA, Drews G (1987) The adaptation of the electron transfer chain of Rhodopseudomonas capsulata to different light intensities. Biochim Biophys Acta 890: 335–345CrossRefGoogle Scholar
  13. Granick S, Beale SI (1978) Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol 46: 33–203PubMedGoogle Scholar
  14. Hornberger U, Liebetanz R, Tichy H-V, Drews G (1990) Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a δ-aminolevulinic acid-dependent mutant strain. Mol Gen Genet 221: 371–378CrossRefGoogle Scholar
  15. Kaufmann N, Hüdig H, Drews G (1984) Transposon Tn5 mutagenesis of genes for the photosynthetic apparatus in Rhodopseudomonas capsulata. Mol Gen Genet 198: 153–158CrossRefGoogle Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680–685CrossRefGoogle Scholar
  17. Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK, Sistrom WR (eds) The Photosynthetic Bacteria. Plenum Press, New York, pp 795–808Google Scholar
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  19. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  20. Marrs BL (1981) Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol 146, 1003–1012PubMedPubMedCentralGoogle Scholar
  21. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY, pp 353–355Google Scholar
  22. Müller M, Blobel G (1984) in vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli. Proc Natl Acad Sci USA 81: 7421–7425CrossRefGoogle Scholar
  23. Narro ML, Adams CW, Cohen SN (1990) Isolation and characterization of Rhodobacter capsulatus mutants defective in oxygen regulation of the puf operon. J Bacteriol 172: 4549–4554CrossRefGoogle Scholar
  24. Nieth K-F, Drews G (1975) Formation of reaction centers and lightharvesting bacteriochlorophyll-protein complexes in Rhodopseudomonas capsulata. Arch Microbiol 104: 77–82CrossRefGoogle Scholar
  25. Schneider K, Beck CF (1987) New expression vectors for identifying and testing signal structures for initiation and termination of transcription. Methods Enzymol 153: 452–461CrossRefGoogle Scholar
  26. Schumacher A, Drews G (1978) The formation of bacteriochlorophyll-protein complexes of the photosynthetic apparatus of Rhodopseudomonas capsulata during early stages of development. Biochim Biophys Acta 501: 183–194CrossRefGoogle Scholar
  27. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1: 37–45Google Scholar
  28. Stiehle H, Cortez N, Drews G (1990) A negatively charged N-terminus in the α polypeptide inhibited formation of the lightharvesting complex I in Rhodobacter capsulatus. J Bacteriol 172: 7131–7137CrossRefGoogle Scholar
  29. Tai TN, Moore MD, Kaplan S (1988) Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70: 139–151CrossRefGoogle Scholar
  30. Troschel D, Müller M (1990) Development of a cell-free system to study the membrane assembly of photosynthetic proteins of Rhodobacter capsulatus. J Cell Biol 111: 87–94CrossRefGoogle Scholar
  31. Viale AA, Wider EA, delC Battle AM (1987) Porphyrin biosynthesis in Rhodopseudomonas palustris-XII. δ-aminolevulinate synthetase switch-off/on regulation. Int J Biochem 19: 379–383CrossRefGoogle Scholar
  32. Warnick GR, Burnham BF (1971) Regulation of Porphyrin biosynthesis. J Biol Chem 246: 6880–6885PubMedGoogle Scholar
  33. Yang Z, Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172: 5001–5010CrossRefGoogle Scholar
  34. Young DA, Bauer CE, Williams JC, Marrs BL (1989) Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet 218: 1–12CrossRefGoogle Scholar
  35. Zhu YS, Hearst JE (1986) Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M, and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proc Natl Acad Sci USA 83: 7613–7617CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Ulrike Hornberger
    • 1
  • Beate Wieseler
    • 2
  • Gerhart Drews
    • 1
  1. 1.Institut für Biologie 2, MikrobiologieGermany
  2. 2.Biochemisches InstitutAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations