Skip to main content
Log in

The transposable element mariner can excise in non-drosophilid insects

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariza RR, Roldán-Arjona T, Hera C, Pueyo C (1993) A method for selection of forward mutations in the supF gene carried by shuttle-vector plasmids. Carcinogenesis 14:303–305

    Google Scholar 

  • Atkinson PW, Warren WD, O'Brochta DA (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc Natl Acad Sci USA 90:9693–9697

    Google Scholar 

  • Bigot Y, Hamelin M-H, Capy P, Periquet G (1994) Mariner-like elements in hymenopteran species: insertion site and distribution. Proc Natl Acad Sci USA 91:3408–3412

    Google Scholar 

  • Blackman RK, Gelbart WM (1989) The transposable element hobo of Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. Amer Soc Microbiol, Washington, DC, pp 523–530

    Google Scholar 

  • Blackman RK, Meselson M (1986) Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J Mol Biol 188:499–515

    Google Scholar 

  • Brunet F, Godin F, David JR, Capy P (1994) The mariner transposable element in the Drosophilidae family. Heredity 73:377–385

    Google Scholar 

  • Bryan GJ, Hartl DL (1988) Maternally inherited transposon excision in Drosophila simulans. Science 240:215–217

    Google Scholar 

  • Bryan GJ, Jacobson JW, Hartl DL (1987) Heritable somatic excision of a Drosophila transposon. Science 235:1636–1638

    Google Scholar 

  • Bryan G, Garza D, Hartl D (1990) Insertion and excision of the transposable element mariner in Drosophila. Genetics 125:103–114

    Google Scholar 

  • Calvi BR, Gelbart WM (1994) The basis for germline specificity of the hobo transposable element in Drosophila melanogaster. EMBO J 13:1636–1644

    Google Scholar 

  • Capy P, David JR, Hartl DL (1992) Evolution of the transposable element mariner in the Drosophila melanogaster species group. Genetica 86:37–46

    Google Scholar 

  • Capy P, Langin T, Bigot Y, Brunet F, Daboussi MJ, Periquet G, David JR, Hartl DL (1994) Horizontal transmission versus ancient origin: mariner in the witness box. Genetica 93:161–170

    Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91:942–946

    Google Scholar 

  • Engels WR (1989) P Elements in Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. Amer Soc Microbiol, Washington, DC, pp 437–484

    Google Scholar 

  • Frommer M, Meats A, Sharkey D, Shearman D, Sved J, Turney C (1995) Sequences from eye colour genes, chorion genes and mariner-like transposable elements in the Queensland fruit fly Bactrocera tryoni. Proceedings of the 4th International Symposium on Fruit Flies of Economic Importance (in press)

  • Garcia-Fernàndez J, Marfany G, Baguñà J, Saló E (1993) Infiltration of mariner elements. Nature 364:109–110

    Google Scholar 

  • Garcia-Fernàndez J, Bayascas-Ramirez JR, Marfany G, Muñoz-Mármol AM, Casali A, Baguñà J, Saló E (1995) High copy number of highly similar mariner-like transposons in Planarian (Platyhelminthes): evidence for a trans-phyla horizontal transfer. Mol Biol Evol 12:421–431

    Google Scholar 

  • Garza D, Medhora M, Koga A, Hard DL (1991) Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics 128:303–310

    Google Scholar 

  • Hartl DL (1989) Transposable element mariner in Drosophila species. In: Berg DE, Howe MM (eds) Mobile DNA. Amer Soc Microbiol, Washington, DC, pp 531–536

    Google Scholar 

  • Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369

    Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Google Scholar 

  • Langin T, Capy P, Daboussi M-J (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    Google Scholar 

  • Lidholm D-A, Gudmundsson GH, Boman HG (1991) A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J Bio Chem 266:11518–11521

    Google Scholar 

  • Lidholm D-A, Lobe AR, Hartl DL (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134:859–868

    Google Scholar 

  • Lohe AR, Lidholm D-A, Hartl DL (1995) Genotypic effects, maternal effects and grand-maternal effects of immobilized derivatives of the transposable element mariner. Genetics 140:183–192

    Google Scholar 

  • Maruyama K, Hartl DL (1991a) Evolution of the transposable element mariner in Drosophila species. Genetics 128:319–329

    Google Scholar 

  • Maruyama K, Hartl DL (1991b) Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol 33:514–524

    Google Scholar 

  • Medhora MM, MacPeek AH, Hartl DL (1988) Excision of the Drosophila transposable element mariner: identification and characterisation of the Mos factor. EMBO J 7:2185–2189

    Google Scholar 

  • Medhora M, Maruyama K, Hartl DL (1991) Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128:311–318

    Google Scholar 

  • Moerman DG, Waterston RH (1989) Mobile elements in Caenorhabditis elegans and other nematodes. In: Berg DE, Howe MM (eds) Mobile DNA. Amer Soc Microbiol, Washington, DC, pp 537–556

    Google Scholar 

  • O'Brochta DA, Gomez SP, Handler AM (1991) P element excision in Drosophila melanogaster and related drosophilids. Mol Gen Genet 225:387–394

    Google Scholar 

  • O'Brochta DA, Warren WD, Saville KJ, Atkinson PW (1994) Interplasmid transposition of Drosophila hobo elements in nondrosophilid insects. Mol Gen Genet 244:9–14

    Google Scholar 

  • Pridmore RD (1987) New and versatile cloning vectors with kanamycin-resistance marker. Gene 56:309–312

    Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Google Scholar 

  • Robertson HM (1995) The Tc1-mariner superfamily of transposons in animals. J Insect Physiol 41:99–105

    Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Bio 2:125–139

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sedensky MM, Hudson SJ, Everson B, Morgan PG (1994) Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res 22:1719–1723

    Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347

    Google Scholar 

  • Thummel CS, Boulet AM, Lipshitz D (1988) Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene 74:445–456

    Google Scholar 

  • Warren WD, Atkinson PW, O'Brochta DA (1994) The Hermes transposable element from the housefly Musca domestica is a short inverted repeat-type element of the hobo, Ac and Tam3 (hAT) element family. Genet Res (Camb) 64:87–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. J. Finnegan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, C.J., Turney, C.L., Frommer, M. et al. The transposable element mariner can excise in non-drosophilid insects. Molec. Gen. Genet. 249, 246–252 (1995). https://doi.org/10.1007/BF00290372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290372

Key words

Navigation