Skip to main content
Log in

A systems theoretical approach to biological membranes

I. Formulation of a generalized model for electrical phenomena in excitable membranes

  • Published:
Kybernetik Aims and scope Submit manuscript

Zusammenfassung

In der vorliegenden Arbeit wird die Eindeutigkeit der Beschreibung erregbarer Membranen mit Hilfe von Ersatzschaltungen untersucht. Bei Voraussetzung der Existenz verschiedener Membrankanäle für den Ionentransport läßt sich unter Berücksichtigung nichtlinearer Eigenschaften eine weitgehend eindeutige Ersatzschaltung für einen Kanal angeben. Als wesentliches Kriterium erweist sich dabei das Vorhandensein eines konstanten Gleichgewichts-potentials für jeden Kanal. Der lonentransport durch die Membran wird durch ein einfaches Elektrodiffusionsmodell beschrieben. Hierin ist der Potentialverlauf in der Membran durch physiko-chemische Eigenschaften der Membran und nicht durch die transportierten Ionen bestimmt. Die Leitfähigkeit eines bestimmten Kanals verändert eine Steuervariable, deren Wert sich mit Hilfe einer algebraischen Beziehung aus den Zustandsvariablen eines linearen Differentialgleichungssystems ergibt (dessen Koeffizienten vom Potential über der Zellmembran abhängen). Die Zusammenfassung mehrerer Kanäle (passives Transportsystem) und die Einführung von Stromgeneratoren für den aktiven Transport (deren Effektivität von der chemischen Zusammensetzung der an die Membran angrenzenden Lösungen abhängt) führt zu einer allgemeinen Ersatzschaltung für die erregbare Membran. Die so gewonnene Beschreibung ist hinreichend allgemeingültig, um als Grundlage für die Analyse von Problemen der Informationsverarbeitung im Nervensystem bzw. für die weitere Aufklärung der in der erregbaren Membran ablaufenden physikalisch-chemischen Prozesse zu dienen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adam,G.: Theorie der Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter. 1. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential. Z. Naturforsch. 23b, 181 (1968).

    Google Scholar 

  • Adelman,W.J.Jr., Palti,Y.: The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J. gen. Physiol. 54, 589–606 (1969).

    Google Scholar 

  • Adelman,W.J.Jr., Senft, J.: Dynamic asymmetries in the squid axon membrane. J. gen. Physiol. 51, 102 s (1968).

    Google Scholar 

  • Adrian,R.H., Chandler,W.K., Hodgkin,A.L.: Voltage clamp experiments in striated muscle fibres. J. Physiol. (Lond.) 208, 607–644 (1970).

    Google Scholar 

  • Agin,D.: Some comments on the Hodgkin-Huxley equation. J. theor. Biol. 5, 161–170 (1963).

    Google Scholar 

  • Agin,D.: An approach to the physical basis of negative conductance in the squid axon. Biophys. J. 9, 209–221 (1969).

    Google Scholar 

  • Armstrong,C.M.: Time course of TEA-induced anomalous rectification in squid giant axons. J. gen. Physiol. 50, 491 (1966).

    Google Scholar 

  • Armstrong,C.M.: Interaction of tetraethylammonium derivatives with the potassium channels of giant axons. J. gen. Physiol. 58, 413–437 (1971).

    Google Scholar 

  • Atwater,T., Bezanilla,F., Rojas,E.: Time course of the sodium permeability change during a single membrane action potential. J. Physiol. (Lond.) 211, 753–765 (1970).

    Google Scholar 

  • Albrecht-Bühler,G., Stanek,F.W.: Zusammenhänge zwischen den Reizantworten und der Strom-Spannungscharakteristik der erregbaren Membran am Ranvierschen Schnürring. Biophysik 6, 207–230 (1970).

    Google Scholar 

  • Baker,P.F., Blaustein,M.P., Keynes,R.D., Manil,J., Shaw,T.J., Steinhards,R.A.: The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J. Physiol. (Lond.) 200, 459–496 (1969).

    Google Scholar 

  • Bezanilla,F., Rojas,E., Taylor,R.E.: Time course of the sodium influx in squid giant axon during a single voltage clamp pulse. J. Physiol. (Lond.) 207, 151–164 (1970a).

    Google Scholar 

  • Bezanilla,F., Rojas,E., Taylor,R.E.: Sodium and potassium conductance changes during a membrane action potential. J. Physiol. (Lond.) 211, 729–751 (1970b).

    Google Scholar 

  • Binstock,L., Goldman,L.: Rectification in instantaneous potassium current-voltage relations in Myxicola giant axons. J. Physiol. (Lond.) 217, 517–531 (1971).

    Google Scholar 

  • Binstock,L., Lecar,H.: Ammonium ion conductances in the squid giant axon. J. gen. Physiol. 53, 342–350 (1969).

    Google Scholar 

  • Blumenthal,R., Changeux,J.P., Lefever,R.: Membrane excitability and dissipative instabilities. J. Membrane Biol. 2, 351–374 (1970).

    Google Scholar 

  • Chandler,W.K., Meves,H.: Voltage clamp experiments on internally perfused giant axons. J. Physiol. (Lond.) 180, 788–820 (1965).

    Google Scholar 

  • Chandler,W.K., Meves,H.: Sodium and potassium currents in squid axons perfused with fluoride solutions. J. Physiol. (Lond.) 211, 623–652 (1970a).

    Google Scholar 

  • Chandler,W.K., Meves,H.: Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J. Physiol. (Lond.) 211, 653–678 (1970b).

    Google Scholar 

  • Chandler,W.K., Meves,H.: Rate constants associated with changes in sodium conductance in axons perfused with sodium fluoride. J. Physiol. (Lond.) 211, 679–705 (1970c).

    Google Scholar 

  • Chandler,W.K., Meves,H.: Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J. Physiol. (Lond.) 211, 707–728 (1970d).

    Google Scholar 

  • Chaplain,R.A., Heydenreich,F., Michaelis,B.: Mechanismen, die der Einstellung des Membranpotentials zugrunde liegen. Studia biophysica 30, 135 (1972).

    Google Scholar 

  • Ciani,S., Eisenman,G., Szabo,G.: A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes. J. Membrane Biol. 1, 1–36 (1969).

    Google Scholar 

  • Cole,K.S.: Electrodiffusion models for the membrane of squid giant axon. Physiol. Rev. 45, 340–379 (1965a).

    Google Scholar 

  • Cole,K.S.: Theory, experiment and the nerve impulse. In: Waterman, T.H., Morowitz, H.J. (Ed.): Theoretical and Mathematical Biology, pp. 136–171. New York, 1965.

  • Cole,K.S.: Membranes, ions and impulses. Berkeley and Los Angeles: Univ. of California Press 1968.

    Google Scholar 

  • Connor,J.A., Stevens,C.F.: Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J. Physiol. (Lond.) 213, 1–19 (1971a).

    Google Scholar 

  • Connor,J.A., Stevens,C.F.: Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J. Physiol. (Lond.) 213, 21–30 (1971b).

    Google Scholar 

  • Connor,J.A., Stevens,C.F.: Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.) 213, 31–53 (1971c).

    Google Scholar 

  • Dodge,F.A., Frankenhaeuser,B.: Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated by the voltage clamp technique. J. Physiol. (Lond.) 148, 188–200 (1959).

    Google Scholar 

  • Ehrenstein,G., Gilbert,D.L.: Slow changes of potassium permeability in the squid giant axon. Biophys. J. 6, 553–566 (1966).

    Google Scholar 

  • Fishmann,R.M.: Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control. Biophys. J. 10, 799–817 (1970).

    Google Scholar 

  • Frankenhaeuser,B.: Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. (Lond.) 160, 40–45 (1962a).

    Google Scholar 

  • Frankenhaeuser,B.: Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 160, 46–53 (1962b).

    Google Scholar 

  • Frankenhaeuser,B.: A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 424–430 (1963a).

    Google Scholar 

  • Frankenhaeuser,B.: Inactivation of the sodium-carrying mechanism in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 445–451 (1963b).

    Google Scholar 

  • Frankenhaeuser,B., Moore,L.E.: The specifity of the initial current in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 438–444 (1963).

    Google Scholar 

  • Goldman,D.E.: Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 37–60 (1943).

    Google Scholar 

  • Goldman,D.E.: A molecular structural basis for the excitation properties of axons. Biophys. J. 4, 167–188 (1964).

    Google Scholar 

  • Grundfest,H.: The varieties of excitable membranes. In: Adelman,W. (Ed.): Biophysics and Physiology of Excitable Membranes, pp. 477–504. New York — London: Van Nostrand Reinhold Comp. 1971.

    Google Scholar 

  • Hille,B.: Charges and potentials at the nerve surface: divalent ons and pH. J. gen. Physiol. 51, 221–236 (1968).

    Google Scholar 

  • Hille,B.: Ionic channels in nerve membranes. Progr. Biophys. Mol. Biol. 21, 1–32 (1970).

    Google Scholar 

  • Hladky,S.B.: The single file model for the diffusion of ions through a membrane. Bull. Math. Biophys. 88, 79 (1965).

    Google Scholar 

  • Hladky,S.B., Harris,J. D.: An ion displacement membrane model. Biophys. J. 7, 535–543 (1967).

    Google Scholar 

  • Hodgkin,A.L., Huxley,A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449–472 (1952a).

    Google Scholar 

  • Hodgkin,A.L., Huxley,A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473–496 (1952b).

    Google Scholar 

  • Hodgkin,A.L., Huxley,A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506 (1952c).

    Google Scholar 

  • Hodgkin,A.L., Huxley,A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952d).

    Google Scholar 

  • Hodgkin,A.L., Keynes,R.D.: The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–98 (1955).

    Google Scholar 

  • Hoyt,R.C.: The squid giant axon. Mathematic models. Biophys. J. 3, 399–431 (1963).

    Google Scholar 

  • Hoyt,R.C., Adelman,JR.W.J.: Sodium inactivation. Experimental test of two models. Biophys. J. 10, 810–617 (1970).

    Google Scholar 

  • Hoyt,R.C., Strieb,J.D.: A stored charge model for the sodium channel. Biophys. J. 11, 868–885 (1971).

    Google Scholar 

  • Jakobsson,E.G., Moore,L.E.: A chemical kinetic model for the effect of calcium and pH on the sodium permeability changes in the nerve membrane. Biophys. Soc. Abstr. 15, 239a (1971).

    Google Scholar 

  • Lorente de No,R.: Theory of the voltage clamp of the nerve membrane. Proc. nat. Acad. Sci. (Wash.) 68, 192–196 (1971).

    Google Scholar 

  • Mackey,M.C.: Kinetic theory model for ion movement through biological membranes. I. Field-dependent conductances in the presence of solution symmetry. Biophys. J. 11, 75–90 (1971a).

    Google Scholar 

  • Mackey,M.C.: Kinetic theory model for ion movement through biological membranes. II. Interionic selectivity. Biophys. J. 11, 91–97 (1971b).

    Google Scholar 

  • Marmor,F.M.: The independence of electrogenetic sodium transport and membrane potential in a molluscan neurone. J. Physiol. (Lond.) 218, 599–608 (1971).

    Google Scholar 

  • Mauro,A.: Anomalous impedance, a phenomenological property of timevariant resistance. Biophys. J. 1, 353–372 (1961).

    Google Scholar 

  • Michaelis,B., Chaplain,R.A.: An asymptotic solution for the steady-state electrodiffusion equations. Math. Biosci., in press.

  • Moore,L.E., Narahashi,T., Shaw,T.:An upper limit to the number of sodium channels in nerve membrane. J. Physiol. (Lond.) 188, 99–105 (1967).

    Google Scholar 

  • Moore,L.E.: Effect of temperature and calcium ions on rate constants of myelinated nerve. Amer. J. Physiol. 221, 131–137 (1971).

    Google Scholar 

  • Murdoch,J.B.: Network Theory. New York — St. Louis — San Francisco — London — Sydney — Toronto — Mexiko — Panama Mc Graw Hill Book Comp. 1970.

    Google Scholar 

  • Neumcke,B.: Ion flux across lipid bilayer membranes with charged surfaces. Biophysik 6, 231–240 (1970).

    Google Scholar 

  • Noble,D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, 1–50 (1966).

    Google Scholar 

  • Philippow,E.: Grundlagen der Elektrotechnik. Leipzig: Akad. Verlagsges. Geest & Portig K.G. 1967.

    Google Scholar 

  • Rojas,E., Atwater,I.: Effect of tetrodotoxin on the early outward current in perfused giant axons. Proc. nat. Acad. Sci. (Wash.) 57, 1350–1355 (1967).

    Google Scholar 

  • Schwarz,F.P.: Zur Biophysik erregbarer Membranen. 8. Gleichrichtung und Summation an der Nervenfaser und am Modell. Acta biol. med. germ. 24, 339–345 (1970).

    Google Scholar 

  • Sjodin,R.A.: The kinetics of sodium extrusion in striated muscle as functions of the external sodium and potassium ion concentrations J. gen. Physiol. 57, 164–187 (1971).

    Google Scholar 

  • Tsien,R.W., Noble,D.: A transition state theory to the kinetics of conductance changes in excitable membranes. J. Membrane Biol. 1, 248–273 (1969).

    Google Scholar 

  • Unbehauen,R.: Systemtheorie. Berlin: Akademie-Verlag 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, B., Chaplain, R.A. A systems theoretical approach to biological membranes. Kybernetik 12, 119–132 (1973). https://doi.org/10.1007/BF00289164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289164

Keywords

Navigation