Skip to main content
Log in

The role of inhibition and adaptation in sensory information processing

  • Published:
Kybernetik Aims and scope Submit manuscript

Abstract

Some common features of neural transformations along sensory pathways are discussed. The emphasis is on spatial mapping in the visual system, but close parallels exist in temporal visual mapping as well as other sensory systems. The role played by lateral inhibition in sequential transformations is investigated by direct computation and by mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arden, G. B.: Types of response and organization of simple receptive fields in cells of the rabbit's lateral geniculate body. J. Physiol. (Lond.) 166, 449 (1963).

    Google Scholar 

  • Attnaeve, F.: Informational aspects of visual perception. Psychol. Rev. 61, 183 (1954).

    Google Scholar 

  • Barlow, H. B.: Action potentials from the frog's retina. J. Physiol. (Lond.) 119, 58 (1953a).

    Google Scholar 

  • — Summation and inhibition in the frog's retina. J. Physiol. (Lond.) 118, 69 (1953b).

    Google Scholar 

  • — Three points about lateral inhibition. In: Sensory communication (W. A. Rosenblith, ed.). New York: Wiley & Sons, Inc. 1961.

    Google Scholar 

  • Baumgartner, G., Brown, J. L., Schulz, A.: Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1 (1965).

    Google Scholar 

  • Beek, B.: Analysis of receptive fields of vertebrate retina by computer simulation. Dissertation, Syracuse University, Syracuse, N.Y. 1970.

    Google Scholar 

  • Békésy, G. v.: Neural funneling along the skin and between inner and outer haircells of the cochlea. J. acoust. Soc. Amer. 31, 1236 (1959).

    Google Scholar 

  • — Neural inhibitory units of the eye and skin. Quantitative description of contrast phenomena. J. opt. Soc. Amer. 50, 1060 (1960).

    Google Scholar 

  • Burns, B. D.: The mammalian cerebral cortex. London: Edward Arnold, Ltd. 1958.

    Google Scholar 

  • Creutzfeldt, O., Lux, H. D., Nacimiento, A. C.: Intracelluläre Reizung corticaler Nervenzellen. Pflügers Arch. ges. Physiol. 281, 129 (1964).

    Google Scholar 

  • Eccles, J. C.: Cerebral synaptic mechanisms. In: Brain and conscious experience (J. C. Eccles, ed.). Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Fuortes, M. G. F.: Electrical activity of the cells of limulus. Amer. J. Ophthal. 46, part II, 210 (1958).

    Google Scholar 

  • — Initiation of impulses in visual cells of limulus. J. Physiol. (Lond.) 148, 14 (1959).

    Google Scholar 

  • Fuster, T. M., Herz, A., Creutzfeldt, O. D.: Interval analysis of cell discharge in spontaneous and optically modulated activity in the visual system. Arch. ital. Biol. 103, 159 (1965).

    Google Scholar 

  • Granit, R.: Receptors and sensory perception. New Haven: Yale Univ. Press 1962.

    Google Scholar 

  • — Kernell, D., Shortess, G. K.: Quantitative aspects of repetitive firing of mammalian motoneurons, as caused by injected currents. J. Physiol. (Lond.) 168, 1911 (1963).

    Google Scholar 

  • Harth, E., Beck, B., Pertile, G., Young, F.: Signal stabilization and noise suppression in neural systems. Kybernetik 7, 112 (1970).

    Google Scholar 

  • Hartline, H. K.: Inhibition of activity of visual receptors by illuminating nearby retinal areas in the limulus eye. Fed. Proc. 8, 69 (1949).

    Google Scholar 

  • Hubel, D. M., Wiesel, T. N.: Receptive fields of single neurons in the cat's striate cortex. J. Physiol. (Lond.) 148, 574 (1959).

    Google Scholar 

  • — Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 155, 385 (1961).

    Google Scholar 

  • Katsuki, Y.: Neural mechanism of auditory sensation in cats. In: Sensory communication (W. A. Rosenblith, ed.). New York: John Wiley & Sons, Inc. 1961.

    Google Scholar 

  • Kuffler, S. W.: Neurons in the retina; organization, inhibition and excitation problems. Cold Spr. Harb. Symp. quant. Biol. 17, 281 (1952).

    Google Scholar 

  • — Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37 (1953).

    Google Scholar 

  • Mach, E.: Über die physiologische Wirkung räumlich verteilter Lichtreize. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 54, Abt. 2, 393 (1866).

  • Mountcastle, V. B., Powell, T. P. S.: Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull. Johns Hopk. Hosp. 105, 201 (1959).

    Google Scholar 

  • Perkel, D. H., Bullock, T. H.: Neural coding. Neurosci. Res. Prog. Bull. 6, 221 (1968).

    Google Scholar 

  • Pertile, G., Harth, E.: A model of adaptation based on relaxation phenomena in the neural membrane. Kybernetik 9, 189–195 (1971).

    Google Scholar 

  • Ratliff, F.: Inhibitory interaction. In: Sensory communication (W. A. Rosenblith, ed.). New York: Wiley & Sons, Inc. 1961.

    Google Scholar 

  • — Mach bands: quantitative studies on neural networks in the retina. Pages 132ff. San Francisco, London and Amsterdam: Holden-Day, Inc. 1965.

    Google Scholar 

  • Sherrington, C. S.: The integrative action of the nervous system. New York: Scribner 1906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harth, E., Pertile, G. The role of inhibition and adaptation in sensory information processing. Kybernetik 10, 32–37 (1972). https://doi.org/10.1007/BF00288781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288781

Keywords

Navigation