Skip to main content
Log in

Diffusion approximation and first passage time problem for a model neuron

  • Published:
Kybernetik Aims and scope Submit manuscript

Abstract

A diffusion equation for the transition p.d.f. describing the time evolution of the membrane potential for a model neuron, subjected to a Poisson input, is obtained, without breaking up the continuity of the underlying random function. The transition p.d.f. is calculated in a closed form and the average firing interval is determined by using the steady-state limiting expression of the transition p.d.f. The Laplace transform of the first passage time p.d.f. is then obtained in terms of Parabolic Cylinder Functions as solution of a Weber equation, satisfying suitable boundary conditions. A continuous input model is finally investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanc-Lapierre, A., Fortet, R.: Theòrie des fonctions alèatoires. Paris: Masson & Cie. 1953.

    Google Scholar 

  • Darling, D. A., Siegert, A. J. F.: The first passage problem for a continuous Markov process. Ann. Math. Statist. 24, 624–639 (1953).

    Google Scholar 

  • Gerstein, G. L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–67 (1964).

    Google Scholar 

  • Hagiwara, S.: Analysis of interval fluctuation of the sensory nerve impulse. Jap. J. Physiol. 4, 234–240 (1954).

    Google Scholar 

  • Helstrom, C. W.: Markov processes and applications. In: A. V. Balakrishnan (ed.), Communication theory. New York: McGraw Hill 1968.

    Google Scholar 

  • Johannesma, P. I. M.: Diffusion models for the stochastic activity of neurons. In: E. R. Caianiello (ed.), Neural networks. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Middleton, D.: An introduction to statistical communication theory. New York: McGraw Hill 1960.

    Google Scholar 

  • Ricciardi, L. M., Esposito, F.: On some distribution functions for non-linear switching elements. Kybernetik 3, 148–152 (1966).

    Google Scholar 

  • — Ventriglia, F.: Probabilistic models for determining the input-output relationship in formalized neurons. I. A theoretical approach. Kybernetik 7, 175–183 (1970).

    Google Scholar 

  • Roy, B. K., Smith, D. R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys. 31, 341–357 (1969).

    Google Scholar 

  • Siegert, A. J. F.: On the first passage time probability problem. Phys. Eev. 81, 617–623 (1951).

    Google Scholar 

  • Tricomi, F. G.: Funzioni Ipergeometriche Confluenti. Roma: Cremonese 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capocelli, R.M., Ricciardi, L.M. Diffusion approximation and first passage time problem for a model neuron. Kybernetik 8, 214–223 (1971). https://doi.org/10.1007/BF00288750

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288750

Keywords

Navigation