Journal of Mathematical Biology

, Volume 27, Issue 5, pp 507–522 | Cite as

Spatial and spatio-temporal patterns in a cell-haptotaxis model

  • P. K. Maini


We investigate a cell-haptotaxis model for the generation of spatial and spatio-temporal patterns in one dimension. We analyse the steady state problem for specific boundary conditions and show the existence of spatially hetero-geneous steady states. A linear analysis shows that stability is lost through a Hopf bifurcation. We carry out a nonlinear multi-time scale perturbation procedure to study the evolution of the resulting spatio-temporal patterns. We also analyse the model in a parameter domain wherein it exhibits a singular dispersion relation.

Key words

Morphogenesis Spatio-temporal pattern Mechanochemical Haptotaxis Singular dispersion relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turing, M. A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., B 237, 37–73 (1952)Google Scholar
  2. 2.
    Murray, J. D.: A pre-pattern formation mechanism for animal coat markings, J. Theor. Biol. 88, 161–199 (1981)Google Scholar
  3. 3.
    Meinhardt, H.: Models of biological pattern formation. London: Academic Press 1982Google Scholar
  4. 4.
    Wolpert, L.: Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol. 25, 1–47 (1969)Google Scholar
  5. 5.
    Oster, G. F., Murray, J. D., Harris, A. K.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83–125 (1983)Google Scholar
  6. 6.
    Oster, G. F., Murray, J. D., Maini, P. K.: A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morph. 89, 93–112 (1985)Google Scholar
  7. 7.
    Murray, J. D., Oster, G. F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol. 19, 265–279 (1984)Google Scholar
  8. 8.
    Perelson, A. S., Maini, P. K., Murray, J. D., Hyman, J. M., Oster, G. F.: Nonlinear pattern selection in a mechanical model for morphogenesis. J. Math. Biol. 24, 525–541 (1986)Google Scholar
  9. 9.
    Maini, P. K., Murray, J. D.: A nonlinear analysis of a mechanical model for biological pattern formation. SIAM J. Appl. Math. 48, 1064–1072 (1988)Google Scholar
  10. 10.
    Haken, H.: Synergetics. An introduction. Nonequilibrium phase transitions and self-organisation in physics, chemistry and biology. Berlin Heidelberg New York: Springer 1977Google Scholar
  11. 11.
    Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Berlin Heidelberg New York: Springer 1979Google Scholar
  12. 12.
    Keener, J. P.: Principles of applied mathematics, transformation and approximation. Reading, Mass.: Addison-Wesley 1988Google Scholar
  13. 13.
    Britton, N. F.: A singular dispersion relation arising in a caricature of a model for morphogensis. J. Math. Biol. 26, 387–403 (1988)Google Scholar
  14. 14.
    Matkowsky, B. J.: A simple non-linear dynamic stability problem. Bull. Am. Math. Soc. 76, 620–625 (1970)Google Scholar
  15. 15.
    Grindrod, P., Sinha, S., Murray, J. D.: Steady state spatial patterns in a cell-chemotaxis model. I.M.A. J. Math. Appl. Med. Biol. (in press)Google Scholar
  16. 16.
    Goldwasser, L., Maini, P. K., Murray, J. D.: Splitting of cell clusters and bifurcation of bryozoan branches. J. Theor. Biol. 137, 271–279 (1989)Google Scholar
  17. 17.
    Stewartson, K., Stuart, J. T.: A non-linear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529–545 (1971)Google Scholar
  18. 18.
    Harris, A., Stopak, D., Wild, P.: Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290, 249–251 (1981)Google Scholar
  19. 19.
    Harris, A., Wild, P., Stopak, D., Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • P. K. Maini
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations