Polar Biology

, Volume 7, Issue 1, pp 43–50 | Cite as

Fluoride in tissues of Krill Euphausia superba Dana and Meganyctiphanes norvegica M. Sars in relation to the moult cycle

  • D. Adelung
  • F. Buchholz
  • B. Culik
  • A. Keck


The fluoride content of whole animals and different tissues of the euphausiid species Euphausia superba and Meganyctiphanes norvegica was analyzed by two different and improved methods of isolation and determination. In contrast to other authors our findings show that the internal organs (muscle, hepatopancreas and hemolymph) contain less than 6 ppm d.w. fluoride this being the same order of magnitude as for vertebrates. The high concentrations reported by other authors must be mainly due to contamination of the soft tissue during storage (post-mortem migration of fluoride from shell) and/or contamination caused by minute fractions of cuticle during dissection. Over 99% of the total fluoride content is located in the cuticle (i.e. integument) of the euphausiids (2600 ppm/d.w. in E. superba and 3300 ppm/d.w. in M. norvegica in pleon cuticle). Analysis of F- levels in relation to the moulting cycle showed that the uptake in both euphausiids occurs at a comparable and fast rate during the same physiological phase shortly after moult, parallel to the general construction of the cuticle. The internal organs show homeostasis in respect to fluoride. Accordingly, no internal deposition takes place, and F- is reaccumulated from the external medium at each moult.


Migration Soft Tissue Fluoride Fast Rate Improve Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelung D (1983) Fluorstoffwechsel in Krillkonsumenten. In: Adelung D (ed) Fluor im antarktischen Ökosystem. DFG-Symp Nov 1982. Kiel Ber Polarforsch 10:46–53Google Scholar
  2. Adelung D, Bößmann K, Rößler D (1985) The distribution of fluoride in some Antarctic seals. Polar Biol 5:31–34Google Scholar
  3. Boone RJ (1981) Methodische Arbeiten zur Bestimmung der anatomischen Verteilung von Fluor im atlantischen Krill. Dipl Arbeit, Universität Hamburg, 120 ppGoogle Scholar
  4. Boone RJ, Manthey M (1983) The anatomical distribution of fluoride within various body segments and organs of Antarctic krill (Euphausia superba Dana). Arch Fischereiwiss 34:81–85Google Scholar
  5. Boysen E, Buchholz F (1984) Meganyctiphanes norvegica in the Kattegat. Studies on the annual development of a pelagic population. Mar Biol 79:195–207Google Scholar
  6. Buchholz F (1982) Drach's molt staging system adapted for euphausiids. Mar Biol 66:301–305Google Scholar
  7. Buchholz F (1985) Moult and growth in euphausiids. In: Antarctic nutrient cycles and food webs. In: Siegfried WR, Condy P, Laws RM (eds) Proc 4th Symp Antarct Biol. Springer, Berlin, pp 339–345Google Scholar
  8. Casalta LL, Olle M, Blachère A, Ceccaldi HJ (1984) Sterols et fluor du krill antarctique, Euphausia superba Dana (Crustacea). Téthys 11:127–132Google Scholar
  9. Christians O, Leinemann M (1980) Untersuchungen über Fluor im Krill (E. superba). Inf Fischwirtschaft 6:254–260Google Scholar
  10. Christians O, Leinemann M, Manthey M (1981) Neue Erkenntnisse über den Flouridgehalt im Krill. Inf Fischwirtschaft 2:70–72Google Scholar
  11. Christians O, Leinemann M (1983) Über die Fluoridwanderung aus den Schalen in das Muskelfleisch bei gefriergelagertem antarktischem Krill (Euphausia superba Dana) in Abhängigkeit von der Lagertemperatur und-zeit. Arch Fischereiwiss 34:87–95Google Scholar
  12. Committee on Dietary Allowances, Food and Nutrition Board, National Research Council (1980) Recommended Dietary Allowances, 9 edn. Washington, pp 156–159Google Scholar
  13. Culik B (1987) Microdiffusion and colorimetric determination of fluoride in biological samples. Anal Chem acta (in press)Google Scholar
  14. Doi E, Kawamura Y, Igarashi S, Yonezawa D (1978) Autolysis of Antarctic Krill (Euphausia superba). Int Congr Food Sci Technol Abstr, p 68Google Scholar
  15. Eagers RY (1969) Toxic properties of inorganic fluoride compounds. Elsevier, Amsterdam London New York, 152 ppGoogle Scholar
  16. Ellingsen TE (1982) Biokjemiske studier over antarktisk krill. Diss University Trondheim, 382 ppGoogle Scholar
  17. Hempel G, Manthey M (1981) On the fluoride content of larval krill (Euphausia superba). Meeresforschung 29:60–63Google Scholar
  18. Ikeda T, Dixon P (1982) Observations on moulting in Antarctic krill (Euphausia superba Dana). Aust J Mar Freshwater Res 33:71–76Google Scholar
  19. Keck A (1984) Untersuchungen zum Fluoridhaushalt der Euphausiaceen am Beispiel von Meganyctiphanes norvegica (M. Sars) und Euphausia superba Dana. Diss Christian Albrecht Universität Kiel, 131 ppGoogle Scholar
  20. Kubota M, Sakai K (1978) Autolysis of Antarctic krill protein and its inactivation by combined effects of temperature and pH. Trans Tokyo Univ Fish 2:53–63Google Scholar
  21. Morris D, Keck A (1984) The time course of the moult cycle and growth of Euphausia superba in the laboratory. A preliminary study. Meeresforschung 30:94–100Google Scholar
  22. Nicholson K (1983) Fluorine determination in geochemistry: Errors in the electrode method of anaysis (Review). Chem Geol 38:1–22Google Scholar
  23. Nicholson K, Duff EJ (1981) Fluoride determination in water: An optimum buffer system for use with the fluoride selective electrode. Anal Lett 14:887–912Google Scholar
  24. Numanoi H (1939) Behaviour of blood calcium in the formation of gastroliths in some decapod crustaceans. Jpn J Zool 8:357–363Google Scholar
  25. Sachs (1984) Angewandte Statistik. Springer, Berlin Heidelberg New York, 545 ppGoogle Scholar
  26. Schneppenheim R (1980) Concentration of fluoride in Antarctic animals. Meeresforschung 28:179–182Google Scholar
  27. Siebert G, Gabriel E, Hannover R, Henschler D, Karle EJ, Kasper H, Mack M, Romen W, Schmauck R, Trautner K (1981) Fütterungsstudie mit Krill an Ratten unter besonderer Berücksichtigung von Fluorid. In: Noelle H (ed) Nahrung aus dem Meer. Springer, Berlin, pp 99–118Google Scholar
  28. Soevik T, Braekkan OR (1979) Fluoride in Antarctic krill (Euphausia superba) and Atlantic krill (Meganyctiphanes norvegica). J Fish Res Board Can 36:1414–1416Google Scholar
  29. Sokal R, Rohlf F (1969) Biometry. Freeman and Co., San FranciscoGoogle Scholar
  30. Szewielow A (1981) Fluoride in krill (Euphausia superba Dana). Meeresforschung 28:244–246Google Scholar
  31. Venkateswarlu P (1974) Reverse extraction technique for the determination of fluoride in biological materials. Anal Chem 46:878–882Google Scholar
  32. Walters CB, Sherlock JC, Evans WH, Read JI (1983) Dietary intake of fluoride in the United Kingdom and fluoride content of some foodstuffs. J Sci Food Agric 34:523–528Google Scholar
  33. Underwood EJ (1977) Fluorine. In: Underwood EJ (ed) Trace elements in human and animal nutrition, 4th edn. Academic Press, New York London, pp 347–369Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • D. Adelung
    • 1
  • F. Buchholz
    • 1
  • B. Culik
    • 1
  • A. Keck
    • 1
  1. 1.Institut für MeereskundeUniversität Kiel, Abteilung MeereszoologieKiel 1Germany

Personalised recommendations