Skip to main content
Log in

Evidence that in higher plants the 25S and 18S rRNA genes are not interspersed with genes for 5S rRNA

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

DNA samples from various higher plants (Phaseolus aureus, Glycine max, Matthiola incana, Brassica pekinensis, Cucumis melo) were centrifuged in actinomycin-caesium chloride gradients and the genes coding for the ribosomal RNAs were detected by hybridisation with tritium labelled 5S and 25S+18S rRNA, respectively. With DNA of low molecular weight (< 5×106 daltons) the 5S and 25S+18S rRNA genes are often fractionated together. A good separation of the genes for 25S+18S rRNA from the 5S rRNA genes occurred only with high molecular weight DNA (> 10×106 daltons) indicating that at least most of the 5S rRNA genes are not linked to, or interspersed with, the genes coding for 25S and 18S rRNA. This result is in agreement with the situation in animal cells and in contrast to that reported for bacteria, lower eukaryotes and chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäumlein, H., Wobus, U.: Chromosomal localization of ribosomal 5S RNA genes in Chironomus thummi by in situ hybridisation of iodinated 5S RNA. Chromosoma (Berl.) 57, 199–204 (1976)

    Google Scholar 

  • Bedbrook, J.R., Kolodner, R., Bogorad, L.: Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell 11, 739–749 (1977)

    Google Scholar 

  • Durante, M., Cionini, P.G., Avanzi, S., Cremonini, R., D'Amato, F.: Cytological localization of the genes for the four classes of ribosomal RNA (25S, 18S, 5.8S and 5S) in polytene chromosomes of Phaseolus coccineus. Chromosoma (Berl.) 60, 269–282 (1977)

    Google Scholar 

  • Grierson, D.: Characterisation of ribonucleic acid components from leaves of Phaseolus aureus. Europ. J. Biochem. 44, 509–515 (1974)

    Google Scholar 

  • Grierson, D., Hemleben, V.: Ribonucleic acid from the higher plant Matthiola incana: Molecular weight measurements and DNA-RNA hybridisation studies. Biochim. biophys. Acta (Amst.) 475, 424–436 (1977)

    Google Scholar 

  • Grierson, D., Loening, U.E.: Ribosomal RNA precursors and the synthesis of chloroplast and cytoplasmic ribosomal ribonucleic acid in leaves of Phaseolus aureus. Europ. J. Biochem. 44, 501–507 (1974)

    Google Scholar 

  • Hemleben, V., Ermisch, N., Kimmich, D., Leber, B., Peter, G.: Studies on the fate of homologous DNA applied to seedlings of Matthiola incana. Europ. J. Biochem. 56, 403–411 (1975)

    Google Scholar 

  • Hemleben, V., Grierson, D., Dertmann, H.: The use of equilibrium centrifugation in actinomycin-caesium chloride for the purification of ribosomal DNA. Plant Sci. Lett. 9, 129–135 (1977)

    Google Scholar 

  • Hennig, W.: Molecular hybridization of RNA and DNA in situ. Int. Rev. Cytol. 36, 1–44 (1973)

    Google Scholar 

  • Ingle, J., Timmis, J.N., Sinclair, J.: The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiol. 55, 496–501 (1975)

    Google Scholar 

  • Leaver, C.J., Key, J.L.: Ribosomal RNA synthesis in plants. J. molec. Biol. 49, 671–680 (1970)

    Google Scholar 

  • Lin, C.Y., Guilfoyle, T.J., Chen, Y.M., Key, J.L.: Isolation of nucleoli and localization of ribonucleic acid polymerase I from soybean hypocotyl. Plant Physiol. 56, 850–852 (1975)

    Google Scholar 

  • Maizels, N.: Dictyostelium 17S, 25S, and 5S rDNAs lie within a 38,000 base pair repeated unit. Cell 9, 431–438 (1976)

    Google Scholar 

  • Nomura, M.: Organization of bacterial genes for ribosomal components: Studies using novel approaches. Cell 9, 633–644 (1976)

    Google Scholar 

  • Pardue, M.L., Brown, D.D., Birnstiel, M.L.: Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma (Berl.) 42, 191–203 (1973)

    Google Scholar 

  • Rogers, M.E., Loening, U.E., Fraser, R.S.S.: Ribosomal RNA precursors in plants. J. molec. Biol. 49, 681–692 (1970)

    Google Scholar 

  • Rubin, G.M., Sulston, J.E.: Physical linkage of the 5S cistrons to the 18S and 28S ribosomal RNA cistrons in Saccharomyces cerevisiae. J. molec. Biol. 79, 521–530 (1973)

    Google Scholar 

  • Wimber, D.E., Duffey, P.A., Steffensen, D.M., Prensky, W.: Localization of the 5S RNA genes in Zea mays by RNA-DNA hybridisation in situ. Chromosoma (Berl.) 47, 353–359 (1974)

    Google Scholar 

  • Wimber, D.E., Steffensen, D.M.: Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridisation. Science 170, 639–641 (1970)

    Google Scholar 

  • Wobus, U.: Hybridisierung von Nukleinsäuren in situ. Biol. Zbl. 95, 1–24 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemleben, V., Grierson, D. Evidence that in higher plants the 25S and 18S rRNA genes are not interspersed with genes for 5S rRNA. Chromosoma 65, 353–358 (1978). https://doi.org/10.1007/BF00286414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286414

Keywords

Navigation