Skip to main content

Advertisement

Log in

Experience with swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

Clinical experience with two types of multifunctional prosthetic hand, controlled by pattern recognition of multiple myoelectric signals is reported. The prostheses have been used for between one and five years by five patients. The pattern recognition control system enabled the patients to control six separate movements accurately after a short period of training. One of the tested prostheses, the SVEN-hand, was not reliable enough to allow clinical use outside the laboratory. The ES-hand, a second generation multifunctional prosthesis, has promising features, being self-contained and fast moving. It is concluded that multifunctional prosthetic hands help amputees to avoid tiresome and awkward compensatory movements. Their scope, however, does not extend beyond that of conventional myoelectric prostheses. Their combined movements are cosmetically more appealing than a single three-point grip. In order to gain wider acceptance, multifunctional prosthetic hands must reach a stage of development comparable to conventional myoelectric devices particularly with regard to weight and compactness. A pattern recognition control system is essential to the design.

Résumé

Les auteurs rapportent l'expérience clinique de deux types de prothèses multifonctionnelles de la main, contrôlées par un système de reconnaissance de signaux myoélectriques multiples. Ces prothèses ont été utilisées par cinq sujets pendant un à cinq ans. Le système de contrôle de reconnaissance permet aux sujets de maîtriser six gestes différents après une courte période de formation. Une des prothèses, la «SVEN-hand», n'est pas suffisamment fiable pour permettre son utilisation en dehors du laboratoire. La «ES-hand», prothèse multifonctionnelle de seconde génération, est prometteuse, étant rapide et autosuffisante.

On peut en conclure que les prothèses multifonctionnelles de la main aident les amputés à éviter des gestes compensatoires fatigants et maladroits. Cependant, leurs performances ne sont pas supérieures à celles des prothèses myoélectriques classiques. Mais, du point de vue esthétique, leurs gestes complexes sont plus satisfaisants qu'une prise à trois points. Pour pouvoir élargir leurs champs d'application, les prothèses multifonctionnelles de la main devraient atteindre un degré de perfection comparable à celui des dispositifs myoélectriques classiques, surtout en ce qui concerne le poids et la miniaturisation. Un système contrôlant la reconnaissance d'un schéma est essentiel pour la conception d'un tel type de prothèse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caine, K., Herberts, P., Körner, L., Wensby, L.: Singlefunction myoelectric prostheses. Acceptance among unilateral below elbow amputees (in Swedish.) Lakartidningen 77, 771–774 (1980)

    Google Scholar 

  2. Childress, D. S.: Powered limb prostheses: their clinical significance. IEEE Trans. Biomed. Eng. 20, 200–207 (1973)

    Google Scholar 

  3. Finley, R. R., Wirta, R. W.: Myocoder-computer study of electromyographic patterns. Arch. Phys. Med. Rehabil. 48, 20–24 (1967)

    Google Scholar 

  4. Germans, G. H., Brekelmans, F. E. M., Wijkmans, D. W.: Some aspects of the design of an EMG-controlled artificial hand with two functions. In: Advances in External Control of Human Extremities: Proceedings of the 3rd Int. Symposium of External Control of Human Extremities, ETAN, Dubrovnik, pp. 185–190 (1970)

    Google Scholar 

  5. Herberts, P., Almström, C., Kadefors, R., Lawrence, P. D.: Hand prosthesis control via myoelectric patterns. Acta Orthop. Scand. 44, 389–409 (1973)

    Google Scholar 

  6. Herberts, P., Almström, C., Caine, K.: Clinical application study of multifunctional prosthetic hands. J. Bone Joint Surg. [Br.] 60, 552–560 (1978)

    Google Scholar 

  7. Herberts, P., Körner, L.: Ideas on sensory feedback in hand prostheses. Prosthet. Orthop. Int. 3, 157–162 (1979)

    Google Scholar 

  8. Hägg, G. M., Spets, K.: SVEN-Project I — Electrically controlled hand prosthesis. FOA 2 report A 2575-H5. Swedish Research Institute of National Defence, Stockholm (1973)

    Google Scholar 

  9. Hägg, G. M., Hayes, W. C., Klasson, B., Ljungqvist, D. P.: Miniaturized electronic event counters. In: Advances in External Control of Human Extremities: Proceedings of the 5th International Symposium on External Control of Human Extremities, ETAN, Dubrovnik, pp. 183–186 (1975)

    Google Scholar 

  10. Hägg, G. M., Öberg, K.: Adaptive EMG controlled hand prosthesis for wrist disarticulated patients. In: Advances in External Control of Human Extremities, ETAN, Beograde, pp. 441–450 (1978)

    Google Scholar 

  11. Höök, O., Finnstam, J., Wager, M., Wannstedt, G.: Examination of patients with severely reduced function of the arms with respect to their need of a manipulator and other technical aids. Acta Academiae Regiae Scientiarum Upsaliensis 17, 55–70 (1973)

    Google Scholar 

  12. Kato, I., Yamakawa, S., Ichikawa, K., Sano, M.: Multifunctional myoelectric hand prosthesis with pressure sensory feedback. Waseda Hand 4P. In: Advances in External Control of Human Extremities: Proceedings of the 3rd International Symposium on External Control of Human Extremities, ETAN, Dubrovnik, pp. 155–170 (1970)

    Google Scholar 

  13. Kobrinskii, A. E., Bolkhovitin, S. V., Voskoboinikowa, L. M., Ioffe, D. M., Polyan, E. P., Popov, B. P., Slavutski, Y. L., Sysin, A. Y., Yakobson, Y. S.: Problems of bioelectric control. In: Automatic and remote control. Proc. 1st Int. Congr. of the International federation of automatic control. Moscow, 1960. London: Butterworths 1961

    Google Scholar 

  14. Lewis, E. A., Sheredos, C. R., Sowell, T. T.: Clinical application study of externally powered upper-limb prosthetic systems: The VA elbow, the VA hand, and the VA/NU myoelectric hand systems. Bull. Prosthet. Res. 10–24, 51–136 (1975)

    Google Scholar 

  15. Lymark, D., Möhl, F.: An electromechanical forearm and hand. In: Advances in External Control of Human Extremities: Proceedings of the 2nd International symposium on External Control of Human Extremities, ETAN, Dubrovnik, pp. 142–150 (1967)

    Google Scholar 

  16. McCloskey, D. I., Gandevia, S. C.: Role of inputs from skin, joints and muscles and of corollary discharges in human discriminatory tasks. In: Active Touch. The mechanism of recognition of objects by manipulation. Ed. Gordon G., Pergamon Press, pp. 177–187 (1978)

  17. Rakic, M.: An above elbow arm prosthesis. In: Advances in External Control of Human Extremities: Proceedings of the 5th International Symposium on External Control of Human Extremities, ETAN, Dubrovnik, pp. 373–388 (1975)

    Google Scholar 

  18. Schmidl, H.: The INAIL-CECA prostheses. Orthotics and Prosthetics 27, 6–13 (1973)

    Google Scholar 

  19. Taylor, D. R., Finley, F. R.: Multiple-axis prosthesis control by muscle synergies. In: The Control of Upper Extremity Prostheses and Orthoses, ed. by P. Herberts, R. Kadefors, R. Magnusson and I. Petersén pp. 181–189. Springfield, Charles C. Thomas 1974

    Google Scholar 

  20. Wirta, R. W., Taylor, D. R.: Development of a multiple-axis myoelectrically controlled prosthetic arm. In: Advances in External Control of Human Extremities: Proceedings of the 3rd International Symposium on External Control of Human Extremities, ETAN, Dubrovnik, pp. 245–254 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almström, C., Herberts, P. & Körner, L. Experience with swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals. International Orthopaedics 5, 15–21 (1981). https://doi.org/10.1007/BF00286094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286094

Key words

Navigation