Chromosoma

, Volume 81, Issue 4, pp 593–617 | Cite as

Germ line polysomy in the grasshopper Atractomorpha similis

  • G. B. Peters
Article

Abstract

Nineteen Eastern Australian populations of the grasshopper Atractomorpha similis (Acridoidea, Pyrgomorphidae) were sampled and male meiotic chromosomes, as well as some male and female somatic mitoses, were examined. In fourteen of these populations, a proportion of the males were found to carry between one and ten extra copies of a particular autosome, the megameric chromosome (A9). Numbers of extra chromosomes varied between but not within the individual follicles of the testis. The extra chromosomes were not found in somatic tissue. In all, 20% of males from the field were germ-line polysomic and within these males, 91% of germ cells were polysomic. In meiosis, extra copies of A9 present as univalents lagged at anaphase I or II and subsequently formed micronuclei which degenerated early in spermiogenesis. As one extra univalent is the most common polysomic condition in natural populations, this elimination of univalents suggests that most polysomic males produce a large proportion of normal haploid sperm. In laboratory cultures, selection for increased frequency of germ-line polysomy, conducted over four generations, raised the proportion of polysomic males from 23% to 71%. Selection against polysomy reduced its frequency to 5%. These breeding experiments also showed that germ-line polysomy is equally transmissible through both the male and the female parent. Transmission data also suggested that these extra chromosomes can arise de novo, presumably by unequal disjunction in previously diploid lines. A computer model was devised, simulating the effects of repeated non-disjunction over a series of mitotic divisions. The behaviour of this model suggested that the distributions of extra chromosome numbers observed in the laboratory generations most probably resulted from such a series of non-disjunctions, occurring in an initially diploid cell population. It seems, therefore, that the transmission of polysomy occurs through the agency of heritable factors which determine the probability of non-disjunction and thus the accumulation of a particular autosome during a specific series of mitotic divisions in the embryonic germ-line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, R.W.: Principles of plant breeding, chapt. 28. New York: John Wiley and Sons 1960Google Scholar
  2. Barlow, P.: The influence of inactive chromosomes on human development. Humangenetik 17, 105–136 (1973)Google Scholar
  3. Blakeslee, A.F.: New Jimson weeds from old chromosomes. Heredity 25, 80–108 (1934)Google Scholar
  4. Bridges, C.B.: Sex in relation to chromosomes and genes. Amer. Naturalist 59, 127–137 (1925)Google Scholar
  5. Comings, D.E.: In: Physiology and genetics of reproduction (F. Fuchs and E.M. Coutinho, eds.) New York: Plenum-Press 1974Google Scholar
  6. Falconer, D.S.: Introduction to quantitative genetics, chapt. 10. Edinburgh: Oliver and Boyd 1960Google Scholar
  7. Hayman, D.L., Martin, P.G., Waller, P.F.: Parallel mosaicism of supernumerary chromosomes and sex chromosomes in Echymipera kalabu (Marsupialia), Chromosoma (Berl.) 27, 371–380 (1969)Google Scholar
  8. Hewitt, G.M.: Meiotic drive for B-chromosomes in the primary oocytes of Myrmeleotettix maculatus (Orthoptera: Acrididae). Chromosoma (Berl.) 56, 381–391 (1976)Google Scholar
  9. Hewitt, G.M., John, B.: Parallel polymorphism for supernumerary segments in Chorthippus parallelus (Zetterstedt) I. British Populations. Chromosoma (Berl.) 25, 319–342 (1968)Google Scholar
  10. John, B., Lewis, K.R.: Chromosome hierarchy, chapt. 3. Clarendon Press, Oxford (1975)Google Scholar
  11. John, B., King, M.: Heterochromatin variation in Cryptobothrus chrysophorus I. Chromosome differentiation in natural populations. Chromosoma (Berl.) 64, 219–239 (1977a)Google Scholar
  12. John, B., King, M.: Heterochromatin variation in Cryptobothrus chrysophorus II. Patterns of C-banding. Chromosoma (Berl.) 65, 59–79 (1977b)Google Scholar
  13. John, B., Miklos, G.E.G.: Functional aspects of Satellite DNA and Heterochromatin. Int. Rev. Cytol. 58, 1–114 (1979)Google Scholar
  14. Khush, G.S.: Cytogenetics of aneuploids, chapt. 6. New York: Academic Press 1973Google Scholar
  15. King, M., John, B.: Regularities and restrictions govering C-band variation in Acridoid grasshoppers. Chromosoma (Berl.) 76, 123–150 (1980)Google Scholar
  16. Lespinasse, R.: Analyse de la transmission des chromosomes surnuméraires chez Locusta migratoria migratoroides R. et. F. (Orthoptera, Acrididae). Chromosoma (Berl.) 59, 307–322 (1977)Google Scholar
  17. Lewis, K.R., John, B.: Breakdown and restoration of chromosome stability following inbreeding in a locust. Chromosoma (Berl.) 10, 589–618 (1959)Google Scholar
  18. Lucov, Z., Nur, U.: Accumulation of B-chromosomes by preferential segregation in females of the grasshopper Melanoplus femur-rubrum. Chromosoma (Berl.) 42, 289–306 (1973)Google Scholar
  19. Lyon, M.F.: Sex chromatin and gene action in the mammalian X-chromosome. Amer. J. Hum. Genet. 14, 135–148 (1962)Google Scholar
  20. Lyon, M.F.: Mechanisms and evolutionary origins of variable X-chromosome activity in mammals. Proc. roy. Soc. B. Lond. 187, 243–268 (1974)Google Scholar
  21. McGrath, J., Hillman, N.: The inability of spermatozoa from sterile (t6/tw32) mice to effect in vitro fertilization. J. Cell. Biol., 75, 170a (1977)Google Scholar
  22. Miklos, G.L.G., Nankivell, R.N.: Telomeric satellite DNA functions in regulating recombination. Chromosoma (Berl.) 56, 143–167 (1976)Google Scholar
  23. Nagl, W.: Zellkern und Zellzyklen, p. 83. Stuttgart: Ulmer 1976Google Scholar
  24. Nagl, W.: Endopolyploidy and Polyteny. In: Differentiation and evolution, chapt. 2. Amsterdam: North-Holland 1978Google Scholar
  25. Nankivell, R.N.: Karyotype differences in the Crenaticeps-group of Atractomorpha (Orthoptera, Acridoidea, Pyrgomorphidae). Chromosoma (Berl.) 56, 127–142 (1976)Google Scholar
  26. Nelson, O.E.: Life cycle, sex differentiation and testis development in Melanoplus differentialis (Acrididae, Orthoptera). J. Morph. 51, 467–525 (1931)Google Scholar
  27. Nur, U.: Mitotic instability leading to an accumulation of B-chromosomes in grasshoppers. Chromosoma (Berl.) 27, 1–19 (1969)Google Scholar
  28. Nur, U.: Asymmetrically heteropycnotic X-chromosomes in the grasshopper Melanoplus femurrubrum. Chromosoma (Berl.) 68, 165–185 (1978)Google Scholar
  29. Peters, G.B.: Germ line polysomy in Atractomorpha similis. PhD thesis, Australian National University, Canberra, Australia (1977)Google Scholar
  30. Rees, H., Jones, R.N.: Chromosome genetics, chapt. 4. London: Edward Arnold 1977Google Scholar
  31. Rothfels, K.H., Procunier, W.S.: B-chromosomes of Neopodismopsis abdominalis (Orthoptera, Acrididae). Chromosoma (Berl.) 52, 137–148 (1975)Google Scholar
  32. Sannomiya, M.: Cytogenetic studies on natural populations of grasshoppers with special reference to B-chromosomes II. Atractomorpha bedeli. Chromosoma (Berl.) 44, 99–106 (1973)Google Scholar
  33. Sharma, G.P., Prashad, R., Gupta, M.L.: Chromosomal variation in the male germ cells of Chrotogonus trachypterus (Blanchard) (Orthoptera: Acridoidea: Pyrgomorphidae) from Ottu (Punjab) La Cellule 65, 295–314 (1965)Google Scholar
  34. Shaw, D.D.: Genetic and environmental components of chiasma control. II. The response to selection in Schistocerca Chromosoma (Berl.) 37, 297–308 (1972)Google Scholar
  35. Webb, G.C.: Chromosome organisation in the Australian plague locust Chortoicetes terminifera. I. Banding relationships of the normal and supernumerary chromosomes. Chromosoma (Berl.) 55, 229–246 (1976)Google Scholar
  36. Webb, G.C., Neuhaus, P.: Chromosome organisation in the Australian plague locust Chortoicetes terminifera. II. Banding variants of the B-chromosome. Chromosoma (Berl.) 70, 205–238 (1979)Google Scholar
  37. Weng, T.S.: Intra-individual variation in number of B-chromosomes in Miscanthus japonicus Anderss. Bot. Bull. Acad. Sinica, 3, 19–31 (1962)Google Scholar
  38. White, M.J.D.: Asymmetry of heteropycnosis in tetraploid cells of a grasshopper. Chromosoma (Berl.) 30, 51–61 (1970)Google Scholar
  39. White, M.J.D.: Animal Cytology and Evolution, 3rd edition, chapt. 9. London: Cambridge University Press 1973Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • G. B. Peters
    • 1
  1. 1.Botany Department, School of General StudiesAustralian National UniversityCanberraAustralia

Personalised recommendations