Skip to main content
Log in

The FUSCA genes of Arabidopsis: negative regulators of light responses

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

More than 200 fusca mutants of Arabidopsis have been isolated and characterised, defining 14 complementation groups. Mutations in at least nine FUSCA genes cause light-dependent phenotypic changes in the absence of light: high levels of anthocyanin accumulation in both the embryo and the seedling, inhibition of hypocotyl elongation, apical hook opening, and unfolding of cotyledons. In double mutants, the fusca phenotype is epistatic to the hy phytochromedeficiency phenotype, indicating that the FUSCA genes act downstream of phytochrome. By contrast, the accumulation of anthocyanin is suppressed by mutations in TT and TTG genes, which affect the biosynthesis of anthocyanin, placing the FUSCA genes upstream of those genes. Regardless of the presence or absence of anthocyanin, fusca mutations limit cell expansion and cause seedling lethality. In somatic sectors, mutant fus1 cells are viable; expressing tissue-specific phenotypes: reduced cell expansion and accumulation of anthocyanin in subepidermal tissue, formation of ectopic trichomes but no reduced cell expansion in epidermal tissue. Our results suggest a model of FUSCA gene action in light-induced signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Google Scholar 

  • Castle LA, Meinke DW (1994) A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25–41

    Google Scholar 

  • Chory J (1992) A genetic model for light-regulated seedling development in Arabidopsis. Development 115: 337–354

    Google Scholar 

  • Chory J (1993) Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet 9:167–172

    Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58:991–999

    Google Scholar 

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    Google Scholar 

  • Deng X-W, Quail PH (1992) Genetic and phenotypic characterization of cop1 mutants of Arabidopsis thaliana. Plant J 2:83–95

    Google Scholar 

  • Deng X-W, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71:791–801

    Google Scholar 

  • Hülskamp M, Misera S, Jörgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555–566

    Google Scholar 

  • Jörgens G, Mayer U, Torres Ruiz RA, Berleth T, Miséra S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Dev Suppl 1: 27–38

    Google Scholar 

  • Koornneef M (1981) The comlex syndrome of ttg mutants. Arabid Inf Serv 18:45–51

    Google Scholar 

  • Koornneef M (1990) Mutations affecting testa colour in Arabidopsis. Arabid Inf Serv 27: 1–4

    Google Scholar 

  • Koornneef M, Hanhart CJ (1983) Linkage marker stocks of Arabidopsis thaliana. Arabid Inf Serv 20:89–92

    Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of lightinhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzephysiol 100: 147–160

    Google Scholar 

  • Koornneef M, Hanhart CJ, van Loenen Martinet EP, van der Veen JH (1987) A marker line that allows the detection of linkage on all Arabidopsis chromosomes. Arabid Inf Serv 23:47–50

    Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Google Scholar 

  • Mayer U, Torres Ruiz RA, Berleth T, Misera S, Jörgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407

    Google Scholar 

  • Mayer U, Büttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • Müller AJ (1961) Zur Charakterisierung der Blüten und Infloreszenzen von Arabidopsis thaliana (L.) Heynh. Kulturpflanze 9:364–393

    Google Scholar 

  • Müller AJ (1963) Embryonentest zum Nachweis rezessiver Letalfaktoren bei Arabidopsis thaliana. Biol Zentralbl 82: 133–163

    Google Scholar 

  • Müller AJ (1964) Mutationsauslösung durch Nitroso-N-methylharnstoff bei Arabidopsis thaliana. Züchter 34:102–120

    Google Scholar 

  • Müller AJ (1966) Die Induktion von rezessiven Letalmutationen durch Äthylmethansulfonat bei Arabidopsis. Züchter 36:201–220

    Google Scholar 

  • Müller AJ, Heidecker U (1968) Lebensfähige und letale fusca Mutanten bei Arabidopsis thaliana. Arabid Inf Serv 5: 54–55

    Google Scholar 

  • Nagatani A, Chory J, Furuya M (1991) Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol 32:1119–1122

    Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol 102:269–277

    Google Scholar 

  • Neuhaus G, Bowler C, Kern R, Chua N-H (1993) Calcium/ calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73:937–952

    Google Scholar 

  • Parks PM, Quail PH (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3: 1177–1186

    Google Scholar 

  • Parks PM, Quail PH (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48

    Google Scholar 

  • Parks PM, Shanklin J, Koornneef M, Kendrick RE, Quail PH (1989) Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the by-1 and by-2 long hypocotyl mutants of Arabidopsis. Plant Mol Biol 12:425–437

    Google Scholar 

  • Patton DA, Franzmann LH, Meinke DW (1991) Mapping genes essentail for embryo development in Arabidopsis thaliana. Mol Gen Genet 227:337–347

    Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    Google Scholar 

  • Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3:1263–1274

    Google Scholar 

  • Wagner E, Mohr H (1966) “Primäre” und “sekundäre” Differenzierung im Zusammenhang mit der Photomorphogenese von Keimpflanzen (Sinapis alba L.). Planta 71:204–221

    Google Scholar 

  • Wei N, Deng X-W (1992) COP9: a new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 4:1507–1518

    Google Scholar 

  • Weiland-Heidecker U (1972) Genetische und physiologische Charakterisierung der fusca Mutanten von Arabidopsis thaliana (L.) Heynh. PhD thesis, Universität Halle-Wittenberg, Germany

    Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Aradbidopsis display a wild-type phenotype in white light. Plant Cell 5: 757–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miséra, S., Müller, A.J., Weiland-Heidecker, U. et al. The FUSCA genes of Arabidopsis: negative regulators of light responses. Molec. Gen. Genet. 244, 242–252 (1994). https://doi.org/10.1007/BF00285451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285451

Key words

Navigation