Skip to main content
Log in

Spectral sensitivity in linear biological models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Properties of spectral components of the system matrix of linear time-invariant discrete or continuous models are investigated. It is shown that the entries in these matrices have the interpretation of being the sensitivity of the system matrix eigenvalues with respect to the model parameters. The spectral resolution formula for linear operators is used to get explicit results about component matrices and eigenvalue sensitivity. In biological modeling, particular interest is in the real maximal or minimal roots of the system matrix. Exact formulation of the related spectral components is made in important system matrix cases such as companion, Leslie, ecosystem, compartmental, and stochastic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D. H.: Estimation and computation of the growth rate in Leslie's and Lotka's population models. Biometrics 31, 701–718 (1975)

    Google Scholar 

  2. Anderson, D. H.: Iterative inversion of single exit compartmental matrices. Comput. Biol. Med. 9, 317–330 (1979)

    Google Scholar 

  3. Anderson, D. H.: Structural properties of compartmental models. Math. Biosci. 58, 61–81 (1982)

    Google Scholar 

  4. Anderson, D. H., Eisenfeld, J., Saffer, S. I., Reisen, J. S., Mize, C. E.: The mathematical analysis of a four-compartment stochastic model of rose bengal transport through the hepatic system. Nonlinear Systems and Applications, Lakshmikantham, V. (ed.). New York: Academic Press pp. 353–371, 1977

    Google Scholar 

  5. Anderson, D. H.: The volume of distribution in single exit compartmental systems. Applied Nonlinear Analysis, Lakshmikantham, V., (ed.). New York: Academic Press pp. 425–437, 1979

    Google Scholar 

  6. Bellman, R. Åström, K. J.: On structural identifiability. Math. Biosci. 7, 329–339 (1970)

    Google Scholar 

  7. Bilheimer, D. W., Goldstein, J. L., Grundy, S. M., Brown, M. S.: Reduction in cholesterol and low density lipoprotein synthesis after portacaval shunt surgery in a patient with homozygous familial hypercholesterolemia. J. Clin. Invest. 56, 1420–1430 (1975)

    Google Scholar 

  8. Caswell, H.: A general formula for the sensitivity of population growth rate to changes in life history parameters. Theoret. Population Biology 14, 215–230 (1978)

    Google Scholar 

  9. Cobelli, C., Lepschy, A., Romanin-Jacur, G.: Structural identifiability of linear compartmental models. Theoretical Systems Ecology, Halfon, E. (ed.). New York: Academic Press pp. 237–258, 1979

    Google Scholar 

  10. Delforge, J.: The problem of structural identifiability of a linear compartmental system: solved or not? Math. Biosci. 36, 119–125 (1977)

    Google Scholar 

  11. Demetrius, L.: Primitivity conditions for growth matrices. Math. Biosci. 12, 53–58 (1971)

    Google Scholar 

  12. Demetrius, L.: The sensitivity of population growth rate to perturbations in the life cycle components. Math. Biosci. 4, 129–136 (1969)

    Google Scholar 

  13. Dunford, N., Schwartz, J. T.: Linear Operators, Part I. New York: Interscience 1967

    Google Scholar 

  14. Eisenfeld, J.: Relationship between stochastic and differential models of compartmental systems. Math. Biosci. 43, 289–305 (1979)

    Google Scholar 

  15. Estreicher, J., Revillard, C., Scherrer, J. R.: Compartmental analysis-I: LINDE, a program using an analytical method of integration with constituent matrices. Comput. Biol. Med. 9, 49–65 (1979)

    Google Scholar 

  16. Faddeev, D. K. Faddeeva, V. N.: Computational Methods of Linear Algebra. San Francisco: Freeman 1963

    Google Scholar 

  17. Fife, D.: Which linear compartmental systems contain traps? Math. Biosci. 14, 311–315 (1972)

    Google Scholar 

  18. Funderlic, R. E., Heath, M. T.: Linear compartmental analysis of ecosystems. Oak Ridge National Laboratory, Report ORNL-IBP-71-4 1971

  19. Goodman, L. A.: On the sensitivity of the intrinsic growth rate to changes in the age-specific birth and death rates. Theoret. Population Biology 2, 339–354 (1971)

    Google Scholar 

  20. Hearon, J. Z.: Theorems on linear systems. Ann. N.Y. Acad. Sci. 108, 36–68 (1963)

    Google Scholar 

  21. Hett, J. M., O'Neill, R. V.: Systems analysis of the Aleut ecosystem. Artic Anthropol. 11, 31–40 (1974)

    Google Scholar 

  22. International Mathematical and Statistical Libraries, Inc., 7500 Bellaire Blvd., Houston, TX 77036

  23. Jacquez, J. A.: Compartmental Analysis in Biology and Medicine. Amsterdam: Elsevier 1972

    Google Scholar 

  24. Kerlin, T. W.: Sensitivities by the state variable approach. Simulation 8, 337–345 (1967)

    Google Scholar 

  25. Keyfitz, N.: Introduction to the Mathematics of Population. Reading, Mass.: Addison-Wesley 1968

    Google Scholar 

  26. Keyfitz, N.: Linkages of intrinsic to age-specific rates. J. Amer. Stat. Assoc. 66, 275–281 (1971)

    Google Scholar 

  27. Lancaster, P.: Theory of Matrices. New York: Academic Press 1969

    Google Scholar 

  28. Luenberger, D. G.: Introduction to Dynamic Systems. New York: John Wiley and Sons 1979

    Google Scholar 

  29. Matis, J. H., Patten, B. C., White G. C.; (eds.): Compartmental Analysis of Ecosystem Models. Fairland, MD: Internat. Co-op. Publishing House 1979

    Google Scholar 

  30. Norton, J. P.: Normal-mode identifiability analyses of linear compartmental systems in linear stages. Math. Biosci. 50, 95–115 (1980)

    Google Scholar 

  31. Pielou, E. C.: An Introduction to Mathematical Ecology. New York: Wiley-Interscience 1969

    Google Scholar 

  32. Walter, E., LeCardinal, G., Bertrand, P.: On the identifiability of linear state systems. Math. Biosci. 31, 131–141 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.H. Spectral sensitivity in linear biological models. J. Math. Biology 20, 203–221 (1984). https://doi.org/10.1007/BF00285347

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285347

Key words

Navigation