Skip to main content
Log in

Optical studies of complexes of quinacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The fluorescence and circular dichroism of quinacrine complexed with nucleic acids and chromatin were measured to estimate the relative magnitudes of factors influencing the fluorescence banding patterns of chromosomes stained with quinacrine or quinacrine mustard. DNA base composition can influence quinacrine fluorescence in at least two ways. The major effect, evident at low ratios of quinacrine to DNA, is a quenching of dye fluorescence, correlating with G-C composition. This may occur largely prior to relaxation of excited dye molecules. At higher dye/DNA saturations, which might exist in cytological chromosome preparations stained with high concentrations of quinacrine, energy transfer between dye molecules converts dyes bound near G-C base pairs into energy sinks. In contrast to its influence on quinacrine fluorescence, DNA base composition has very little effect on either quinacrine binding affinity or the circular dichroism of bound quinacrine molecules. The synthetic polynucleotides poly(dA-dT) and poly(dA)-poly(dT) have a similar effect on quinacrine fluorescence, but differ markedly in their affinity for quinacrine and in the circular dichroism changes associated with quinacrine binding. Quinacrine fluorescence intensity and lifetime are slightly less when bound to calf thymus chromatin than when bound to calf thymus DNA, and minor differences in circular dichroism between these complexes are observed. Chromosomal proteins probably affect the fluorescence of chromosomes stained with quinacrine, although this effect appears to be much less than that due to variations in DNA base composition. The fluorescence of cytological chromosome preparations may also be influenced by fixation effects and macroscopic variations in chromosome coiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brody, T.: Histones in cytological preparations. Exp. Cell Res. 85, 255–263 (1974)

    Google Scholar 

  • Caspersson, T., Lindsten, J., Lomakka, G., Moller, A., Zech, L.: The use of fluorescence techniques for the recognition of mammalian chromosomes and chromosome regions. Int. Rev. exp. Path. 11, 1–72 (1972)

    Google Scholar 

  • Cassim, J. Y., Yang, J. T.: A computer calibration of the circular dichrometer. Biochemistry (Wash.) 8, 1947–1951 (1969)

    Google Scholar 

  • Chan, L. M., Van Winkle, Q.: Interaction of acriflavine with DNA and RNA. J. molec. Biol. 40, 491–495 (1969)

    Google Scholar 

  • Chen, R. F.: Practical aspects of the calibration and use of the Aminco-Bowman spectrophotofluorometer. Analyt. Biochem. 20, 339–357 (1967)

    Google Scholar 

  • Chen, R. F.: Measurements of absolute values in biochemical fluorescence spectroscope. Nat. Bur. Stand. (Special Pub.) 378, 183–196 (1973)

    Google Scholar 

  • Comings, D. E., Avelino, E.: Mechanisms of chromosome banding. Exp. Cell Res. 86, 202–206 (1974)

    Google Scholar 

  • Crothers, D.: Calculation of binding isotherms for heterogeneous polymers. Biopolymers 6, 575–584 (1968)

    Google Scholar 

  • Dorman, B. P., Hearst, J. E., Maestre, M. F.: U.V. Absorption and circular dichroism measurements on light scattering biological specimens. In: Methods in enzymology XXVII (C. H. W. Hirs and S. N. Timasheff, eds.), p. 767–769. New York: Academic Press 1973

    Google Scholar 

  • Ellison, J. R., Barr, H. J.: Quinacrine fluorescence of specific chromosome regions. Late replication and high A∶T content in Samoaia leonensis. Chromosoma (Berl.) 36, 375–390 (1972)

    Google Scholar 

  • Förster, T.: Delocalized excitation and excitation transfer. In: Modern quantum chemistry, vol. III (O. Sinanoglu, ed.), p. 93–137. New York: Academic Press 1965

    Google Scholar 

  • Frenster, J. H., Allfrey, V. G., Mirsky, A. E.: Repressed and active chromatin isolated from interphase lymphocytes. Proc. nat. Acad. Sci. (Wash.) 50, 1026–1032 (1963)

    Google Scholar 

  • Genest, D., Wahl, P. H., Auchet, J. C.: The fluorescence anisotrophy decay due to energy transfer occurring in the ethidium bromide-DNA complex. Determination of the deformation angle of the DNA helix. Biophys. Chem. 1, 266–278 (1974)

    Google Scholar 

  • Golomb, H. H., Bahr, G. E.: Correlation of fluorescent banding pattern and ultrastructure of a human chromosome. Exp. Cell Res. 84, 121–126 (1974)

    Google Scholar 

  • Gottesfeld, J. M., Bonner, J., Radda, G. K., Walker, I. O.: Biophysical studies on the mechanism of quinacrine staining of chromosomes. Biochemistry (Wash.) 13, 2937–2945 (1974)

    Google Scholar 

  • Heneen, W. K., Caspersson, T.: Identification of the chromosomes of rye by distribution patterns of DNA. Hereditas (Lund) 74, 259–272 (1973)

    Google Scholar 

  • Hickey, P.M., Hamori, E.: Kinetic investigation of the random-coil to doublehelix conformation change of poly[d(A-T)]. Biochemistry (Wash.) 11, 2327–23333 (1972)

    Google Scholar 

  • Hsu, T. C.: Longitudinal differentiation of chromosomes. Ann. Rev. Genet. 7, 153–176 (1973)

    Google Scholar 

  • Hundley, L., Coburn, T., Garwin, E., Stryer, L.: Nanosecond fluorometer. Rev. Sci. Inst. 38, 488–492 (1967)

    Google Scholar 

  • Ilyin, Y. V., Varshavsky, A. Y., Mickelsaar, Y. N., Georgiev, G. P.: Studies on deoxyribonucleoprotein structure. Redistribution of proteins in mixtures of deoxyribonucleoproteins, DNA, and RNA. Europ. J. Biochem. 22, 235–245 (1971)

    Google Scholar 

  • Latt, S.A., Brodie, S.: Fluorescent probes of chromosome structure. Proc. Int. Conf. on Excited States of Biological Molecules, Lisbon, 1974 (J. Birks, ed.). New York: J. Wiley & Sons (in press, 1975)

    Google Scholar 

  • Latt, S. A., Gerald, P. S.: Staining of human metaphase chromosomes with fluorescent conjugates of polylysine. Exp. Cell Res. 81, 401–406 (1973)

    Google Scholar 

  • Latt, S. A., Sober, H. A.: Protein-nucleic acid interactions. II. Oligopeptide-polyribonucleotide binding studies. Biochemistry (Wash.) 6, 3293–3306 (1967)

    Google Scholar 

  • Lerman, L. S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.) 49, 94–102 (1963)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Mason, S. F.: The development of theories of optical activity and of their applications. In: Fundamental aspects of recent developments of optical rotatory dispersion and circular dichroism (F. Ciardelli and P. Salvadori, eds.), p. 27–40. London: Heyden & Sons, Ltd. 1973

    Google Scholar 

  • Miller, E. J., Miller, D. A., Warburton, D.: Application of new staining techniques to the study of human chromosomes. Progr. Med. Genet. 9, 1–47 (1973)

    Google Scholar 

  • Modest, E. J., Sengupta, S. K.: Chemical correlates of chromosomal banding. In: Chromosome identification, 23rd Nobel Symposium (T. Caspersson and L. Zech, eds.). New York: Academic Press 1973

    Google Scholar 

  • Nastasi, M., Yip, R. W., Seligy, V. L., Szabo, A. G., Williams, R. E.: Exciton-like splitting in acridine dye-nucleic acid complexes. Nature (Lond.) 249, 248–250 (1974)

    Google Scholar 

  • Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequence. Exp. Cell Res. 72, 602–608 (1972)

    Google Scholar 

  • Panyim, S., Chalkley, R.: High resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys. 130, 337–346 (1969)

    Google Scholar 

  • Scatchard, G.: The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672 (1949)

    Google Scholar 

  • Schmir, M., Revet, B. M. J., Vinograd, J.: Dependence of the sedimentation coefficient of denatured closed circular DNA in alkali on the degree of strand interwinding. The absolute sense of supercoils. J. molec. Biol. 82, 35–45 (1974)

    Google Scholar 

  • Schnedl, W.: Late DNA replication pattern of human chromosomes determined by means of 3H-deoxycytidine. Humangenetik 20, 55–58 (1973)

    Google Scholar 

  • Schneider, A. S.: Analysis of optical activity spectra of turbid biological suspensions. Methods in enzymology XXVII (C. H. W. Hirs and S. N. Timasheff, eds.), p. 751–767. New York: Academic Press 1973

    Google Scholar 

  • Schneider, W. C.: Determination of nucleic acids in tissues by pentose analysis. In: Methods in enzymology III (S. P. Colowick and N. O. Kaplan, eds.), p. 680–684. New York: Academic Press 1957

    Google Scholar 

  • Selander, R. K.: Interaction of quinacrine mustard with mononucleotides and polynucleotides. Biochem. J. 131, 749–755 (1973)

    Google Scholar 

  • Selander, R. K., Chapelle, A. de la: The fluorescence of quinacrine mustard with nucleic acids. Nature (Lond.) New Biol. 245, 240–244 (1973)

    Google Scholar 

  • Shih, T. Y., Fasman, G. D.: Circular dichroism studies of histone-deoxyribonucleic acid complexes. A comparison of complexes with histone I (f-1), histone VI (f 2a1), and their mixtures. Biochemistry (Wash.) 11, 398–404 (1972)

    Google Scholar 

  • Simpson, R. T.: Structure and functions of chromatin. Advanc. Enzymol. 38, 41–108 (1973)

    Google Scholar 

  • Sober, H. A.: Handbook of biochemistry. Selected data for molecular biology, 2nd edit., Chemical Rubber Co. 1970

  • Stryer, L.: Fluorescence spectroscopy of proteins. Science 162, 526–533 (1968)

    Google Scholar 

  • Weisblum, B.: Why centric regions of quinacrine-treated mouse chromosomes show diminished fluorescence. Nature (Lond.) 246, 150–151 (1973)

    Google Scholar 

  • Weisblum, B., Haseth, P. L. de: Quinacrine. A chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)

    Google Scholar 

  • Yguerabide, J.: Nanosecond fluorescence spectroscopy of macromolecules. In: Methods in enzymology XXVI (C. H. W. Hirs and S. N. Timasheff, eds.), p. 498–578. New York: Academic Press 1973

    Google Scholar 

  • Zubay, G., Doty, P.: The isolation and properties of deoxyribonucleic-protein particles containing single nucleic acid molecules. J. molec. Biol. 1, 1–20 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latt, S.A., Brodie, S. & Munroe, S.H. Optical studies of complexes of quinacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations. Chromosoma 49, 17–40 (1974). https://doi.org/10.1007/BF00284985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284985

Keywords

Navigation