Skip to main content
Log in

Characterisation of the wheat genome by renaturation kinetics

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Reassociation kinetics of sheared hexaploid wheat DNA in 0.18 M Na+ at 60 °C show the presence of three major classes of nucleotide sequences; (1) a very rapidly reannealing fracton that comprises about 4 to 10% of the genome and reanneals virtually instantly. This fraction contains sequences which appear to be randomly distributed through at least 40% of the genome; they may be palindromic sequences; (2) a heterogeneous intermediate reannealing fraction comprising about 70–80% of the genome which consists of families with apparent repetition frequencies ranging from about 100–100000; and (3) a slow reannealing fraction. These fractions have been isolated and studied separately. Seventy percent of the slow reannealing fraction (12 to 20% of the genome) was found to contain sequences present in approximately six copies per hexaploid genome. The single copy sequences in the three constituent diploid genomes of hexaploid wheat appear to show near complete homology to one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendich, A. J., McCarthy, B. J.: DNA comparisons among barley, oats, rye and wheat. Genetics 65, 545–566 (1970)

    Google Scholar 

  • Bennett, M. D.: Nuclear DNA content and minimum generation time in herbaceous plants. Proc. roy. Soc. B 181, 109–135 (1972)

    Google Scholar 

  • Bonner, T. I., Brenner, D. J., Neufeld, B. R., Britten, R. J.: Reduction in rate of DNA reassociation by sequence divergence. J. molec. Biol. 81, 123–135 (1973)

    Google Scholar 

  • Britten, R. J., Kohne, D. E.: Repeated sequences in DNA. Science 161, 529–540 (1968)

    Google Scholar 

  • Britten, R. J., Smith, J.: A bovine genome. Carnegie Inst. Wash. Year Book 68, 378–386 (1970)

    Google Scholar 

  • Cairns, J.: The chromosome of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 28, 43–46 (1963)

    Google Scholar 

  • Danna, K., Nathans, D.: Specific cleavage of Simian virus 40 DNA by restriction endonuclease of Hemophilis influenzae. Proc. nat. Aead. Sci. (Wash.) 68, 2913–2917 (1971)

    Google Scholar 

  • Davidson, E. H., Graham, D. E., Neufeld, B. R., Chamberlin, M. E., Amenson, C. S., Hough, B. R., Britten, R. J.: Arrangement and characterisation of repetitive sequence elements in animal DNAs. Cold Spr. Harb. Symp. quant. Biol. 38, 295–302 (1974)

    Google Scholar 

  • Davidson, E. H., Hough, B. R., Amenson, C. S., Britten, R. J.: General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. molec. Biol. 77, 1–23 (1973)

    Google Scholar 

  • Flavell, R. B., Bennett, M. D., Smith, J. B., Smith, D. B.: Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12, 257–269 (1974)

    Google Scholar 

  • Freifelder, D.: Molecular weight of coliphage and coliphage DNA. IV. Molecular weights of DNA from 'phages T4 T5 T7 and the general problem of determination of molecular weight. J. molec. Biol. 54, 567–577 (1970)

    Google Scholar 

  • Graham, D. E., Neufeld, B. R., Davidson, E. H., Britten, R. J.: Interspersion of repetitive and non-repetitive DNA sequences in the sea urchin genome. Cell 1, 127–137 (1974)

    Google Scholar 

  • Hamer, D. H., Thomas, C. A., Jr.: Palindrome theory, J. molec. Biol. 84, 139–144 (1974)

    Google Scholar 

  • Kram, R., Botcham, M., Hearst, J. E.: Arrangement of the highly reiterated DNA sequences in the centric heterochromatin of Drosophila melanogaster. Evidence for interspersed spacer DNA. J. molec. Biol. 64, 103–117 (1972)

    Google Scholar 

  • Kuprijanova, V. S., Timofeeva, M. J.: Repeated nucleotide sequences in the loach genome. Europ. J. Biochem. 44, 59–65 (1974)

    Google Scholar 

  • Laird, C. D.: Chromatid structure: Relationship between DNA content and nucleotide sequence diversity. Chromosoma (Berl.) 32, 378–406 (1971)

    Google Scholar 

  • Laird, C. D., Chooi, W. Y., Cohen, E. H., Dickson, E., Hutchinson, N., Turner, S. H.: Organisation and transcription of DNA in chromosomes and mitochondria of Drosophila. Cold Spr. Harb. Symp. quant. Biol. 38, 311–328 (1974)

    Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol. 3, 208–218 (1961)

    Google Scholar 

  • McConaughty, B. C., Laird, C. D., McCarthy, B. J.: Nucleic acid reassociation in formamide. Biochemistry (Wash.) 8, 3289–3295 (1969)

    Google Scholar 

  • Mitra, R., Bhatia, C. R.: Repeated and non-repeated nucleotide sequences in diploid and polyploid wheat species. Heredity 31, 251–262 (1973)

    Google Scholar 

  • Miura, K.: Preparation of bacterial DNA by the phenol-pH-9-RNases method. In: Methods in enzymology, vol. XII, A, p. 543–545. New York: Academic Press 1967

    Google Scholar 

  • Saunders, G. F., Shirakawa, S., Saunders, P. P., Arrighi, F. E., Hsu, T. C.: Populations of repeated DNA sequences in the human genome. J. molec. Biol. 63, 323–334 (1972)

    Google Scholar 

  • Schildkraut, C. L., Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430–443 (1962)

    Google Scholar 

  • Schumaker, V. N., Schachmann, H. K.: Ultracentrifugal analysis of dilute solutions. Biochim. biophys. Acta (Amst.) 23, 628–639 (1957)

    Google Scholar 

  • Smith, D. B., Flavell, R. B.: The relatedness and evolution of repeated nucleotide sequences in the DNA of some Gramineae species. Biochem. Genet. 12, 243–256 (1974)

    Google Scholar 

  • Straus, N. A.: Comparative DNA renaturation kinetics in amphibians. Proc. nat. Acad. Sci (Wash.) 68, 799–802 (1971)

    Google Scholar 

  • Studier, F. W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965)

    Google Scholar 

  • Sutton, W. D.: A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim. biophys. Acta (Amst.) 240, 522–531 (1971)

    Google Scholar 

  • Ullman, J. S., McCarthy, B. J.: The relationships between mismatched base pairs and the thermal stability of DNA duplexes. Biochim. biophys. Acta (Amst.) 294, 405–415 (1973)

    Google Scholar 

  • Wetmur, J. G., Davidson, N.: Kinetics of renaturaton of DNA. J. molec. Biol. 31, 349–370 (1968)

    Google Scholar 

  • Wilson, D. A., Thomas, C. A., Jr.: Palindromes in chromosomes. J. molec. Biol. 84, 115–144 (1974)

    Google Scholar 

  • Wu, J.-R., Hurn, J., Bonner, J.: Size and distribution of the repetitive segments of the Drosophila genome. J. molec. Biol. 64, 211–219 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.B., Flavell, R.B. Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50, 223–242 (1975). https://doi.org/10.1007/BF00283468

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283468

Keywords

Navigation