Skip to main content
Log in

Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) were compared for their ability to solubilize Pb from a highly-contaminated (PbT 21%) soil collected from a battery recycling facility. For chelant concentrations below 0.04 M (representing a 1:1 chelant-to-PbT molar ratio), EDTA released 10 to 30% more Pb than NTA. NTA-to-Pb T ratios greater than 1:1 reduced Pb recovery because of readsorption of Pb(NTA)2 4− onto positively-charged oxide soil components at pH < 8.5. For the EDTA system, however, complexation completely bound all coordination sites of Pb and EDTA, leaving no functional groups available for surface adsorption. Thus, Pb recovery progressively increased with higher EDTA concentrations, although the additional Pb release with each EDTA increment became smaller. For pH < 5 and EDTA/Pb of 2:1, Pb recovery exceeded 90%. The addition of 0.5 M NaC1O4 enhanced Pb recovery by EDTA for pH 5 to 12, but substantially suppressed recovery by NTA for pH < 11. Because Pb release by NTA was diminished by high ionic strength and chelant-to-metal ratios, NTA may be limited as a soil washing reagent. Stronger complexation and consistent Pb desorption behavior by EDTA favors its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anson, F. C.: 1975, Ace. Chem. Res. 8, 400.

    Google Scholar 

  • Assink, J. W.: 1986, ‘Extractive Methods for Soil Decontamination: A General Survey and Review of Operational Treatment Installations’, in J. W. Assink and W. J. van den Brink (eds.), Contaminated Soil, Martinus Nijhoff, Dordrecht, Holland, p. 655.

    Google Scholar 

  • Banat, K., Forstner, V., and Muller, G.: 1974. Chem. Geol. 14, 199.

    Google Scholar 

  • Benjamin, M. M. and Leckie, J. O.: 1981, Environ. Sci. Tech. 15, 1050.

    Google Scholar 

  • Borggaard, O. K.: 1979, J. Soil Sci. 30, 727.

    Google Scholar 

  • Bowers, A. R.: 1982, ‘Adsorption Characteristics of Various Heavy Metals at the Oxide-Solution Interface’, PhD thesis. University of Delaware, Newark. U.S.

    Google Scholar 

  • Childs, C. W.: 1971, ‘Chemical Equilibrium Models for Lake Water Containing Nitrilotriacetate and for Normal Lake Water’, Proc. 14th Conf. Great Lakes Res., Intl. Assoc. Great Lakes Res., p. 198.

  • Chubin, R. G. and Street, J. J.: 1981, J. Environ. Qual. 10, 225.

    Google Scholar 

  • Elliott, H. A. and Huang, C. P.: 1979, J. Colloid Interface Sci. 70, 29.

    Google Scholar 

  • Elliott, H. A., Linn J. H., and Shields, G. A.: 1989, Hazard. Wastes Hazard. Mat. 6, (in press).

  • Elliott, H. A. and Denneny, C. M.: 1982, J. Environ. Qual. 11, 658.

    Google Scholar 

  • Ellis, W. D., Fogg, T. C., and Tafuri, A. N.: 1986, USEPA Hazardous Waste Engr. Res. Lab. Cincinnati, OH.

  • Farrah, H. and Pickering, W. F.: 1977, Aust. J. Chem. 30, 1417.

    Google Scholar 

  • Garnett, K., Kirk, P. W. W., Lester, J. N., and Perry, R.: 1985, J. Environ. Qual. 14, 549.

    Google Scholar 

  • Guy, R. D. and Chakrabarti, D. L.: 1976, Can. J. Chem. 54, 2600.

    Google Scholar 

  • Karamanos, R. E., Bettany, J. R., and Rennie, D. A.: 1976, Can. J. Soil Sci. 56, 37.

    Google Scholar 

  • Kobayashi, J. Morii, F., and Muramato, S.: 1974, Removal of Cadmium from Polluted Soil with the Chelating Agent EDTA, in D. N. Hemphill (ed.), Trace Subst. in Environ: Health, XIII. Univ. of Missouri, p. 179.

  • Lindsay, W. L.: 1979, Chemical Equilibria in Soils, Wiley-Interscience, New York.

    Google Scholar 

  • Martell, A. E. and Smith, R. M.: 1976, Critical Stability Constants, Plenum Press, New York.

    Google Scholar 

  • Miller, W. P., Martens, D. C., and Zelazny, L. W.: 1986. Soil Sci. Soc. Am. J. 50, 598.

    Google Scholar 

  • PEI Associates, Inc.: 1986, Electromembrane Process for Recovery of Lead from Contaminated Soils. Nat. Science Foundation Grant No. ISI-8560730.

  • Pickering, W. F.: 1986, Ore Geol. Rev. 1, 83.

    Google Scholar 

  • Preer, J. R., Akintoye, J. O., and Martin, M. L.: 1984, Biol. Trace Element Res. 6, 79.

    Google Scholar 

  • Sims, R. and Wagner, K.: 1983, ‘In-situ Treatment Techniques Applicable to Large Quantities of Hazardous Waste Contaminated Soils’, in Proc. of Management of Uncontrolled Hazardous Waste Sites, Hazardous Materials Control Res. Inst. Silver Spring, MD, p. 226.

    Google Scholar 

  • Snoeyink, V. L. and Jenkins, D.: 1980, Water Chemistry, John Wiley, New York.

    Google Scholar 

  • Temple, P. J., Linzon, S. N., and Chai, B. L.: 1977, Environ. Pollut. 12, 311.

    Google Scholar 

  • Vuceta, J. and Morgan, J. J.: 1978, Environ. Sci. Tech. 12, 130.

    Google Scholar 

  • Vydra, F. and Markova, V.: 1962, Talanta 9, 449.

    Google Scholar 

  • Winslow, G.: 1988, Hazard. Waste Manag. Magazine. Nov-Dec. p. 7.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, H.A., Brown, G.A. Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45, 361–369 (1989). https://doi.org/10.1007/BF00283464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283464

Keywords

Navigation