Water, Air, and Soil Pollution

, Volume 45, Issue 3–4, pp 361–369 | Cite as

Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils

  • H. A. Elliott
  • G. A. Brown
Article

Abstract

Nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) were compared for their ability to solubilize Pb from a highly-contaminated (PbT 21%) soil collected from a battery recycling facility. For chelant concentrations below 0.04 M (representing a 1:1 chelant-to-PbT molar ratio), EDTA released 10 to 30% more Pb than NTA. NTA-to-Pb T ratios greater than 1:1 reduced Pb recovery because of readsorption of Pb(NTA)24− onto positively-charged oxide soil components at pH < 8.5. For the EDTA system, however, complexation completely bound all coordination sites of Pb and EDTA, leaving no functional groups available for surface adsorption. Thus, Pb recovery progressively increased with higher EDTA concentrations, although the additional Pb release with each EDTA increment became smaller. For pH < 5 and EDTA/Pb of 2:1, Pb recovery exceeded 90%. The addition of 0.5 M NaC1O4 enhanced Pb recovery by EDTA for pH 5 to 12, but substantially suppressed recovery by NTA for pH < 11. Because Pb release by NTA was diminished by high ionic strength and chelant-to-metal ratios, NTA may be limited as a soil washing reagent. Stronger complexation and consistent Pb desorption behavior by EDTA favors its use.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anson, F. C.: 1975, Ace. Chem. Res. 8, 400.Google Scholar
  2. Assink, J. W.: 1986, ‘Extractive Methods for Soil Decontamination: A General Survey and Review of Operational Treatment Installations’, in J. W. Assink and W. J. van den Brink (eds.), Contaminated Soil, Martinus Nijhoff, Dordrecht, Holland, p. 655.Google Scholar
  3. Banat, K., Forstner, V., and Muller, G.: 1974. Chem. Geol. 14, 199.Google Scholar
  4. Benjamin, M. M. and Leckie, J. O.: 1981, Environ. Sci. Tech. 15, 1050.Google Scholar
  5. Borggaard, O. K.: 1979, J. Soil Sci. 30, 727.Google Scholar
  6. Bowers, A. R.: 1982, ‘Adsorption Characteristics of Various Heavy Metals at the Oxide-Solution Interface’, PhD thesis. University of Delaware, Newark. U.S.Google Scholar
  7. Childs, C. W.: 1971, ‘Chemical Equilibrium Models for Lake Water Containing Nitrilotriacetate and for Normal Lake Water’, Proc. 14th Conf. Great Lakes Res., Intl. Assoc. Great Lakes Res., p. 198.Google Scholar
  8. Chubin, R. G. and Street, J. J.: 1981, J. Environ. Qual. 10, 225.Google Scholar
  9. Elliott, H. A. and Huang, C. P.: 1979, J. Colloid Interface Sci. 70, 29.Google Scholar
  10. Elliott, H. A., Linn J. H., and Shields, G. A.: 1989, Hazard. Wastes Hazard. Mat. 6, (in press).Google Scholar
  11. Elliott, H. A. and Denneny, C. M.: 1982, J. Environ. Qual. 11, 658.Google Scholar
  12. Ellis, W. D., Fogg, T. C., and Tafuri, A. N.: 1986, USEPA Hazardous Waste Engr. Res. Lab. Cincinnati, OH.Google Scholar
  13. Farrah, H. and Pickering, W. F.: 1977, Aust. J. Chem. 30, 1417.Google Scholar
  14. Garnett, K., Kirk, P. W. W., Lester, J. N., and Perry, R.: 1985, J. Environ. Qual. 14, 549.Google Scholar
  15. Guy, R. D. and Chakrabarti, D. L.: 1976, Can. J. Chem. 54, 2600.Google Scholar
  16. Karamanos, R. E., Bettany, J. R., and Rennie, D. A.: 1976, Can. J. Soil Sci. 56, 37.Google Scholar
  17. Kobayashi, J. Morii, F., and Muramato, S.: 1974, Removal of Cadmium from Polluted Soil with the Chelating Agent EDTA, in D. N. Hemphill (ed.), Trace Subst. in Environ: Health, XIII. Univ. of Missouri, p. 179.Google Scholar
  18. Lindsay, W. L.: 1979, Chemical Equilibria in Soils, Wiley-Interscience, New York.Google Scholar
  19. Martell, A. E. and Smith, R. M.: 1976, Critical Stability Constants, Plenum Press, New York.Google Scholar
  20. Miller, W. P., Martens, D. C., and Zelazny, L. W.: 1986. Soil Sci. Soc. Am. J. 50, 598.Google Scholar
  21. PEI Associates, Inc.: 1986, Electromembrane Process for Recovery of Lead from Contaminated Soils. Nat. Science Foundation Grant No. ISI-8560730.Google Scholar
  22. Pickering, W. F.: 1986, Ore Geol. Rev. 1, 83.Google Scholar
  23. Preer, J. R., Akintoye, J. O., and Martin, M. L.: 1984, Biol. Trace Element Res. 6, 79.Google Scholar
  24. Sims, R. and Wagner, K.: 1983, ‘In-situ Treatment Techniques Applicable to Large Quantities of Hazardous Waste Contaminated Soils’, in Proc. of Management of Uncontrolled Hazardous Waste Sites, Hazardous Materials Control Res. Inst. Silver Spring, MD, p. 226.Google Scholar
  25. Snoeyink, V. L. and Jenkins, D.: 1980, Water Chemistry, John Wiley, New York.Google Scholar
  26. Temple, P. J., Linzon, S. N., and Chai, B. L.: 1977, Environ. Pollut. 12, 311.Google Scholar
  27. Vuceta, J. and Morgan, J. J.: 1978, Environ. Sci. Tech. 12, 130.Google Scholar
  28. Vydra, F. and Markova, V.: 1962, Talanta 9, 449.Google Scholar
  29. Winslow, G.: 1988, Hazard. Waste Manag. Magazine. Nov-Dec. p. 7.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • H. A. Elliott
    • 1
  • G. A. Brown
    • 1
  1. 1.Agricultural Engineering DepartmentPennsylvania State UniversityUniversity ParkU.S.A.

Personalised recommendations