Skip to main content
Log in

Mutations of coliphage λ affecting the expression of replicative functions O and P

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A selection technique, using the thermoinducible prophage λCI857Nsus7 Nsus53, has lead to the characterization of a new class of prophage mutations (called r), which prevent host killing upon thermal induction.

N-defective r mutants efficiently complement λi434 or λO and P mutants, but not the corresponding mutants of λi21. Complementation data suggest that the λi21 hybrid fails to provide the positive regulatory mechanism dependent on the λN-gene product, since it cannot activate the Q gene of a λN-defective mutant. Thus, it seems possible that r mutants cannot express genes O and P unless the N-gene product is present in the cell. This interpretation is supported by the fact that r mutants are not defective and form plaques when their N-gene is functional.

r mutation confer a clear phenotype, and map in the y-CII region. Results of a density gradient analysis suggest that they result from small insertions of DNA. Induced N-defective r prophages appear to be only poorly transcribed on strand H.

Complementation tests performed in a strain lysogenic for λ indicate that the C17 mutation can suppress a r mutation in a cis position, even in the absence of the N-gene product.

These results suggest that the expression of genes O and P, in addition to gene Q, is under the positive regulation of the N-gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleyard, R. K.: Segregation of lambda lysogenicity during bacterial recombination in Escherichia coli K12. Genetics 39, 429–439 (1954).

    Google Scholar 

  • Brachet, P., Green, B.: Functional analysis of early defective mutants of coliphage λ. Virology 40, 792–799 (1970).

    Google Scholar 

  • —, Thomas, R.: Mapping and functional analysis of y and CII mutants. Mutat. Res. 7, 257–260 (1969).

    Google Scholar 

  • Brooks, K.: Studies in physiological genetics of some suppressor-sensitive mutants of coliphage λ. Virology 26, 237–239 (1965).

    Google Scholar 

  • Butler, B., Echols, H.: Regulation of bacteriophage λ development by gene N: Properties of a mutation that by passes N control of late protein synthesis. Virology 40, 212–222 (1970).

    Google Scholar 

  • Campbell, A.: Sensitive mutants of bacteriophage λ. Virology 26, 237–239 (1961).

    Google Scholar 

  • Couturier, M., Dambly, C.: Activation séquentielle des fonetions tardives chéz les bactériophages tempérés. C. R. Acad. Sci. (Paris) 270, 428–431 (1970).

    Google Scholar 

  • Eisen, H. A., Fuerst, C., Siminovitch, L., Thomas, R., Lambert, L., Pereira da Silva, L., Jacob, F.: Genetics and physiology of defective lysogen in K12 (λ). Studies of early mutants. Virology 30, 224–241 (1966).

    Google Scholar 

  • — Pereira da Silva, L., Jacob, F.: The regulation and mechanism of DNA synthesis in bacteriophage λ. Cold Spr. Harb. Symp. quant. Biol. 33, 755–764 (1968).

    Google Scholar 

  • Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilized on membrane. J. molec. Biol. 12, 829–842 (1965).

    Google Scholar 

  • Hopkins, N.: By passing a positive regulator: isolation of a λ mutant that does not require N product to grow. Virology 40, 223–229 (1970).

    Google Scholar 

  • Haradecna, Z., Szybalsky, W.: Fractionation of the complementary strands of coliphage λDNA based on the asymetric distribution of poly IG-binding sites. Virology 32, 633–643 (1967).

    Google Scholar 

  • Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961).

    Google Scholar 

  • Jordan, E., Saedler, H., Starlinger, P.: 0° and strong polar mutations in the gal operon are insertions. Molec. Gen. Genetics 102, 353–363 (1968).

    Google Scholar 

  • Kaiser, A. D.: Mutations in temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3, 42–61 (1957).

    Google Scholar 

  • — Jacob, F.: Recombination between related bacteriophages and the genetic control of immunity and prophage localization. Virology 4, 509–521 (1957).

    Google Scholar 

  • Kellenberger, G., Zichichi, M. L., Weigle, J.: Mutations affecting the density of bacteriophage λ. Nature (Lond.) 187, 161–162 (1960).

    Google Scholar 

  • Kourilsky, P., Marcaud, L., Sheldrick, P., Luzzati, D., Gros, F.: Studies on the messenger RNA of bacteriophage λ. I. Various species synthesized early after induction of the prophage. Proc. nat. Acad. Sci. (Wash.) 61, 1013–1020 (1968).

    Google Scholar 

  • Lepecq, J. B., Baldwin, R. L.: The starting point and direction of λDNA replication. Cold Spr. Harb. Symp. quant. Biol. 33, 609–620 (1968).

    Google Scholar 

  • Ogawa, T., Tomizawa, J.: Replication of bacteriophage DNA of lambda phage defective in early functions. J. molec. Biol. 38, 217–225 (1968).

    Google Scholar 

  • Packman, S., Sly, W.: Constitutive lambda DNA replication by λC17, a regulatory mutant related to virulence. Virology 34, 778–789 (1968).

    Google Scholar 

  • Pereira da Silva, L., Eisen, H., Jacob, F.: Sur la réplication du bactériophage λ. C. R. Acad. Sci. (Paris) 266, 926–928 (1968).

    Google Scholar 

  • —, Jacob, F.: Induction of CII and O functions in early defective lambda prophages. Virology 33, 618–624 (1967).

    Google Scholar 

  • —: Etude génétique d'une mutation modifiant la sensibilité à l'immunité chez le bactériophage lambda. Ann. Inst. Pasteur 115, 145–158 (1968).

    Google Scholar 

  • Ptashne M., Hopkins, N.: The operators controlled by the λ phage repressor. Proc. nat. Acad. Sci. (Wash.) 60, 1282–1287 (1968).

    Google Scholar 

  • Roberts J.: Promoter mutation in vitro. Nature (Lond.) 224, 480–482 (1969a).

    Google Scholar 

  • — Termination factor for RNA synthesis. Nature (Lond.) 224, 1168–1174 (1969b).

    Google Scholar 

  • Shapiro, J.: Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. molec. Biol. 40, 93–105 (1969).

    Google Scholar 

  • Szpirer, J., Brachet, P.: Relations physiologiques entre les phages tempérés λ et Φ 80. Molec. Gen. Genetics 108, 78 (1970).

    Google Scholar 

  • Szybalsky, W.: Initiation and patterns of transcription during phage development. Can. Cancer. Conf. 8, 183–215 (1969).

    Google Scholar 

  • Taylor, K., Hradecna, Z., Szybalsky, W.: Asymetric distribution of the transcribing regions on the complementary strands of coliphage λDNA. Proc. nat. Acad. Sci. (Wash.) 57, 1618–1625 (1967).

    Google Scholar 

  • Thomas, R.: Control of development in temperate bacteriophages. I. Induction of prophage genes following heteroimmune superinfection. J. molec. Biol. 22, 79–95 (1966).

    Google Scholar 

  • —, Leurs, C., Dambly, C., Parmentier, D., Lambert, L., Brachet, P., Lefebvre, N., Mousset, S., Porcheret J., Szpirer, J., Wauters, D.: Isolation and characterization of new sus (amber) mutants of bacteriophage λ. Mutat. Res. 4, 735–741 (1967).

    Google Scholar 

  • Weigle, J., Meselson, M., Paigen, K.: Modified density of transducing phage λ. Brokhaven Symposia in Biology 12, 121–133 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Bertani

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brachet, P., Eisen, H. & Rambach, A. Mutations of coliphage λ affecting the expression of replicative functions O and P. Molec. Gen. Genet. 108, 266–276 (1970). https://doi.org/10.1007/BF00283357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283357

Keywords

Navigation