Skip to main content
Log in

Mechanizing set theory

Cardinal arithmetic and the Axiom of Choice

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Fairly deep results of Zermelo-Frænkel (ZF) set theory have been mechanized using the proof assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice (AC). A key result about cardinal multiplications is κ ⊗ κ=κ, where κ is any infinite cardinal. Proving this result required developing theories of orders, order-isomorphisms, order types, ordinal arithmetic, cardinals, etc.; this covers most of Kunen, Set Theory, Chapter I. Furthermore, we have proved the equivalence of 7 formulations of the Well-ordering Theorem and 20 formulations of AC; this covers the first two chapters of Rubin and Rubin, Equivalents of the Axiom of Choice, and involves highly technical material. The definitions used in the proofs are largely faithful in style to the original mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrial, J. R. and Laffitte, G.: Towards the mechanization of the proofs of some classical theorems of set theory, Preprint, 1993.

  2. Bancerek, Grzegorz: Countable sets and Hessenberg's theorem, Formalized Mathematics 2 (1990), 499–503. On the World Wide Web at http://math.uw.bialystok.pl/ ∼Form.-Math/Vol2/dvi/card_4.dvi.

    Google Scholar 

  3. Boyer, R. S. and Strother Moore, J.: A Computational Logic, Academic Press, 1979.

  4. Boyer, R. S. and Strother Moore, J.: A Computational Logic Handbook, Academic Press, 1988.

  5. Gilles Dowek: The Coq Proof Assistant User's Guide, Technical Report 154, INRIA-Rocquencourt, 1993.

  6. Farmer, W. M., Guttman, J. D., and Thayer, J. F.: IMPS: An interactive mathematical proof system, J. Automated Reasoning 11(2) (1993), 213–248.

    Google Scholar 

  7. Gardner, M.: The Unexpected Hanging and Other Mathematical Diversions, University of Chicago Press, 1991.

  8. Gordon, M. J. C. and Melham, T. F.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic, Cambridge University Press, 1993.

  9. Halmos, P. R.: Naive Set Theory, Van Nostrand, 1960.

  10. Huet, G.: Residual theory in λ-calculus: A formal development, Journal of Functional Programming 4(3) (1994), 371–394.

    Google Scholar 

  11. van Bentham Jutting, L. S.: Checking Landau's ‘Grundlagen’ in the AUTOMATH System, PhD thesis, Eindhoven University of Technology, 1977.

  12. Kunen, K.: Set Theory: An Introduction to Independence Proofs, North-Holland, 1980.

  13. Miller, D.: Unification under a mixed prefix, Journal of Symbolic Computation 14(4) (1992), 321–358.

    Google Scholar 

  14. Nederpelt, R. P., Geuvers, J. H., and de Vrijer, R. C.: Selected Papers on Automath, North-Holland, 1994.

  15. Noël, Ph.: Experimenting with Isabelle in ZF set theory, J. Automated Reasoning 10(1) (1993), 15–58.

    Google Scholar 

  16. Paulson, L. C.: Constructing recursion operators in intuitionistic type theory, Journal of Symbolic Computation 2 (1986), 325–355.

    Google Scholar 

  17. Paulson, L. C.: Isabelle: The next 700 theorem provers, in P. Odifreddi (ed.), Logic and Computer Science, Academic Press, 1990, pp. 361–386.

  18. Paulson, L. C.: Set theory for verification: I. From foundations to functions, J. Automated Reasoning 11(3) (1993), 353–389.

    Google Scholar 

  19. Paulson, L. C.: A fixedpoint approach to implementing (co)inductive definitions, in Alan Bundy (ed.), Automated Deduction — CADE-12, LNAI 814, Springer, 1994, pp. 148–161, 12th international conference.

  20. Paulson, L. C.: Isabelle: A Generic Theorem Prover, LNCS 828, Springer, 1994.

  21. Paulson, L. C.: Set theory for verification: II. Induction and recursion, J. Automated Reasoning 15(2) (1995), 167–215.

    Google Scholar 

  22. The QED manifesto: On the World Wide Web at http://www.mcs.anl.gov/home/lusk/qed/manifesto.html, 1995.

  23. Art Quaife: Automated deduction in von Neumann-Bernays-Gödel set theory, J. Automated Reasoning 8(1) (1992), 91–147.

    Google Scholar 

  24. Rubin, H. and Rubin, J. E.: Equivalents of the Axiom of Choice, II, North-Holland, 1985.

  25. Russinoff, D. M.: A mechanical proof of quadratic reciprocity, J. Automated Reasoning 8(1) (1992), 3–22.

    Google Scholar 

  26. Shankar, N.: Metamathematics, Machines, and Gödel's Proof, Cambridge University Press, 1994.

  27. Suppes, P.: Axiomatic Set Theory, Dover, 1972.

  28. Yu, Yuan: Computer proofs in group theory, J. Automated Reasoning 6(3) (1990), 251–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, L.C., Grabczewski, K. Mechanizing set theory. J Autom Reasoning 17, 291–323 (1996). https://doi.org/10.1007/BF00283132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283132

Key words

Navigation