Skip to main content
Log in

A seismic refraction study of cretaceous oceanic lithosphere in the Northwest Pacific Basin

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

A seismic refraction study on old (≈110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anosov G. I., Argentov V. V., and Gnibidenko H. S., 1982, Crustal Low-velocity Zone South of Shatsky Rise, Northwest Pacific Ocean, Geo-Mar. Lett. 2, 17–21.

    Google Scholar 

  • Arons A. B., 1948, Secondary Pressure Pulses due to Gas Globe Oscillation in Underwater Explosions. II. Selection of Adiabatic Parameters in the theory of Oscillation, J. Acous. Soc. America 20, 277–282.

    Google Scholar 

  • Arons A. B., 1954, Underwater Explosion Shock Wave Parameters at Large Distances from the Charge, J. Acous. Soc. America 26, 343–346.

    Google Scholar 

  • Arons A. B., Slifko J. P., and Carter A., 1948, Secondary Pressure Pulses due to Gas Globe Oscillation in Underwater Explosions. I. Expermental Data, J. Acous. Soc. America 20, 271–276.

    Google Scholar 

  • Asada, T. and Shimamura, H., 1976, Observations of Earthquakes and Explosions at the Bottom of the Western Pacific: Structure of the Oceanic Lithosphere Revealed by Longshot Experiment, in G. H. Sutton, M. H. Manghnani, and R. Moberly (eds), The Geophysics of the Pacific Ocean Basin and its Margin, AGU, Geophys. Monogr. Ser. 19, Washington, D. C., 135–153.

  • Bibee L. D. and Shor G. G.Jr., 1976, Compressional Wave Anisotropy in the Crust and Upper Mantle, Geophys. Res. Lett. 3, 639–642.

    Google Scholar 

  • Byrne D. A., Harris D., Duennebier F. K., and Cessaro R., 1987, The Ocean Sub-bottom Seismometer System Installed in Deep Sea Drilling Project Hole 581C, Leg 88: A Technical Review, Init. Repts. DSDP 88, 65–88.

    Google Scholar 

  • Bratt S. R. and Purdy G. M., 1984, Structure and Variability of Oceanic Crust on the Flanks of the East Pacific Rise between 11°N and 13°N, J. Geophys. Res. 89, 6111–6125.

    Google Scholar 

  • Carter J., Duennebier F. K., and Hussong D., 1984, A Comparison between a Downhole Seismometer and a Seismometer on the Ocean Floor, Bull. Seism. Soc. Am. 74, 763–772.

    Google Scholar 

  • Chapman C. H., 1978, A New Method for Computing Synthetic Seismograms, Geophys. J. R. Astron. Soc. 54, 481–518.

    Google Scholar 

  • Christensen N. I., 1974, Compressional Wave Velocities in Possible Mantle Rocks to Pressures of 30 kilobars, J. Geophys. Res. 79, 407–412.

    Google Scholar 

  • Christensen N. I. and Salisbury M. H., 1975, Structure and Constitution of the Lower Oceanic Crust, Rev. Geophys. Space Phys. 13, 57–86.

    Google Scholar 

  • Dorman L. M. and Jacobson R. S., 1981, Linear Inversion of Body Wave Data Part I: Velocity Structure from Traveltimes and Ranges, Geophysics 46, 138–151.

    Google Scholar 

  • Duennebier F. K. and Blackinton G., 1983, The Ocean Subbottom Seismometer, in R. A. Geyer (ed), CRC Handbook of Geophysical Exploration at Sea, Boca Raton, Florida (CRC Press.), 317–332.

    Google Scholar 

  • Duennebier F. K., Lienert B., Cessaro R., Anderson P., and Mallick S., 1987a, Controlled-source Seismic Experiment at Hole 581C, Init. Repts. DSDP 88, 105–125.

    Google Scholar 

  • Duennebier F. K., McCreery C. S., Harris D., Cessaro R. K., Fisher C., and Anderson P., 1987b, OSS IV: Noise Levels, Signal-to-Noise Ratios, and Noise Sources, Init. Repts, DSDP 88, 89–103.

    Google Scholar 

  • Duennebier F. K., Stephen R. A., Gettrust J. F. et al., 1987c, Site 581: Downhole Seismometer Experiment in the Northwest Pacific, Init. Repts. DSDP 88, 9–36.

    Google Scholar 

  • Ewing J. I. and Purdy G. M., 1982, Upper Crustal Velocity Structure in the ROSE Area of the East Pacific Rise. J. Geophys. Res. 87, 8397–8402.

    Google Scholar 

  • Fuchs K. and Müller G., 1971, Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations, Geophys. J. R. Astron. Soc. 23, 417–433.

    Google Scholar 

  • Goslin J., Beuzart P., Francheteau J., and Le Pichon X., 1972, Thickening of the Oceanic Layer in the Pacific Ocean. Mar. Geophys. Res. 1, 418–427.

    Google Scholar 

  • Grim M. S. and Gettrust J. F., 1987, Geophysical Site Survey Results: Leg 88, Init. Repts. DSDP 88, 39–53.

    Google Scholar 

  • Heath G. R., Burckle L. H. et al., 1985, Site 581, Init. Repts. DSDP 86, 241–266.

    Google Scholar 

  • Hilde, T. W. C., Isezaki, N., and Wageman, J. M., 1976, Mesozoic Seafloor Spreading in the North Pacific in G. H. Sutton, M. H. Manghnani, and R. Moberly (eds), The Geophysics of the Pacific Ocean Basin and its Margin, AGU, Geophys. Monogr. Ser. Vol. 19, Washington, D.C., 205–226.

  • Houtz R. and Ewing J., 1976, Upper Crustal Structure as a Function of Plate Age J. Geophys. Res. 81, 2490–2498.

    Google Scholar 

  • Kempner W. C. and Gettrust J. F., 1982a, Ophiolites, Synthetic Seismograms, and Ocean Crustal Structure, 1. Comparison of Ocean Bottom Seismometer Data and Synthetic Seismograms for the Bay of Islands Ophiolite, J. Geophys. Res. 87, 8447–8462.

    Google Scholar 

  • Kempner W. C. and Gettrust J. F., 1982b, Ophiolites, Synthetic Seismograms, and Oceanic Crustal Structure, 2. A Comparison of Synthetic Seismograms of the Samail Ophiolite, Oman, and the ROSE Refraction Data from the East Pacific Rise, J. Geophys. Res. 87, 8463–8476.

    Google Scholar 

  • Kong L., Brocher T. M., and Stephen R. A., 1985, Spreading Rate Independence of Oceanic Seismic Layer 2, Geophys. Res. Lett. 12, 219–222.

    Google Scholar 

  • Lewis B. T. R., 1978, Evolution of Ocean Crust Seismic Velocities, Ann. Rev. Earth Planet. Sci. 6, 377–404.

    Google Scholar 

  • Purdy G. M., 1983, The Seismic Structure of 140 Myr Old Crust in the Western Central Atlantic Ocean, Geophys. J. R. Astron. Soc. 72, 115–137.

    Google Scholar 

  • Raitt R. W., Shor G. G., Francis T. J. G. and Morris G. B., 1969, Anisotropy of the Pacific Upper Mantle, J. Geophys. Res. 74, 3095–3109.

    Google Scholar 

  • Shearer P. M., Orcutt J. A., Jordan T. H., Whitmarsh R. B., Kim I. I., Adair R. G., and Burnett M. S., 1987, The Ngendei Seismic Refraction Experiment at Hole 595B-Ocean bottom Seismometer Data and Evidence for Crustal and Upper Mantle Anisotropy, Init. Repts. DSDP 91, 385–436.

    Google Scholar 

  • Spudich P. and Orcutt J., 1980, A New Look at the Seismic Velocity Structure of the Oceanic Crust, Rev. Geophys. Space Phys. 18, 627–645.

    Google Scholar 

  • Sutton, G. H., Maynard, G. L., and Hussong, D. M., 1971, Widespread Occurrence of a High Velocity Basal Layer in the Pacific Crust Found with Repetitive Sources and Sonobuoys, in J. G. Heacock (ed.), The Structure and Physical Properties of the Earth's Crust, AGU, Geophys. Monogr. Ser. 14, Washington, D.C., 193–209.

  • White R. S., 1979, Oceanic Upper Crustal Structure from Variable Angle Seismic Reflection-refraction Profiles, Geophys. J. R. Astron. Soc. 57, 683–726.

    Google Scholar 

  • Whitmarsh R. B., Orcutt J. A., Jordan T. H., Adair R. G., and Shearer P. M., 1987, Velocity Bounds on the Seismic Structure of Mesozoic Crust and Upper Mantle in the Southwest Pacific Basin from Downhole Observations at DSDP Hole 595B, Init. Repts. DSDP 91, 437–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bée, M., Bibee, L.D. A seismic refraction study of cretaceous oceanic lithosphere in the Northwest Pacific Basin. Marine Geophysical Researches 11, 239–261 (1989). https://doi.org/10.1007/BF00282578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282578

Key words

Navigation