Skip to main content
Log in

Convex functions and subharmonic functions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

It is a classical result that a composition of a convex, increasing function and of a subharmonic function is subharmonic. We give related results for a composition of a convex function of several variables and of several subharmonic functions, thus imporving some recent results in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E.: ‘Survey of Pluri-Potential Theory’, Several Complex Variables, Proc. Mittag-Leffler Inst. 1987–88 (John ErikFornaess, ed.), Mathematical Notes 38, Princeton University Press, Princeton, 1993, pp. 48–97.

    Google Scholar 

  2. Gardiner, S. J.: ‘A Maximum Principle and Results on Potentials’, J. Math. Anal. Appl. 108 (1985), 507–514.

    Google Scholar 

  3. Gardiner, S. J.: ‘Convexity and Subharmonicity’, Elem. Math. 44 (1989), 145–150.

    Google Scholar 

  4. Gardiner, S. J. and Klimek, M.: ‘Convexity and Subsolutions of Partial Differential Equations’, Bull. London Math. Soc. 18 (1986), 41–43.

    Google Scholar 

  5. Hasumi, M.: Hardy Classes on Infinitely Connected Riemann Surfaces, Lecture Notes in Mathematics 1027, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  6. Hayman, W. K. and Kennedy, P. B.: Subharmonic Functions I, London Mathematical Society Monographs 9, Academic Press, London, 1976.

    Google Scholar 

  7. Heins, M.: Hardy Classes on Riemann Surfaces, Lecture Notes in Mathematics 98, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  8. Ishihara, T.: ‘A Mapping of Riemannian Manifolds which Preserves Harmonic Functions’, J. Math. Kyoto Univ. 19 (1979), 215–229.

    Google Scholar 

  9. Klimek, M.: Pluripotential Theory, London Mathematical Society Monographs, New Series 6, Oxford University Press, New York, 1991.

    Google Scholar 

  10. Persson, L. E.: ‘Generalizations of Some Classical Inequalities and Their Applications’, Non-linear Analysis, Function Spaces and Applications, Vol. 4 (Roudnice and Laben 1990), Teubner-Texte Math. 119, Teubner, Leipzig, 1990, pp. 127–148; Department of Mathematics, Research Report 1990-5 (ISSN 1101-1327), Luleå University, Sweden.

    Google Scholar 

  11. Radó, T.: Subharmonic Functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 5, no. 1, Springer-Verlag, Berlin, 1937.

    Google Scholar 

  12. Riihentaus, J.: ‘On the Composition of Convex and Subharmonic Functions’, unpublished manuscript, 1993.

  13. Rockafellar, R. T.: Convex Analysis, Princeton Mathematical Series 28, Princeton University Press, Princeton, 1970.

    Google Scholar 

  14. Rudin, W.: Real and Complex Analysis, Second Edition, Tata McGraw-Hill, New Delhi, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riihentaus, J. Convex functions and subharmonic functions. Potential Anal 5, 301–309 (1996). https://doi.org/10.1007/BF00282365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282365

Mathematics Subject Classifications (1991)

Key words

Navigation