Skip to main content

Advertisement

Log in

Chaperone-mediated activation in vivo of a Pseudomonas cepacia lipase

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

An extracellular Pseudomonas cepacia lipase, LipA, is inactive when expressed in the absence of the product of the limA gene. Evidence has been presented that LimA is a molecular chaperone. The lipA and limA genes have been cloned in separate and independently inducible expression systems in Escherichia coli. These systems were used to test the molecular chaperone hypothesis by investigating whether LimA could activate presynthesized prelipase and whether presynthesized LimA could activate newly synthesized prelipase. The results show that LimA cannot activate presynthesized prelipase and that presynthesized LimA can activate only a limited number of de novo synthesized prelipase molecules. Co-immunoprecipitation of prelipase/lipase with LimA generated a 1:1 complex of prelipase/lipase and LimA. The results suggest that a 1:1 complex of LipA and LimA is required for prelipase processing and secretion of active lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anfinsen CB, Haber E, Sela M, White FH (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Google Scholar 

  • Bjerrum OJ, Heegaard NH (1987) Handbook of immunoblotting of proteins. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and amplification of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    CAS  PubMed  Google Scholar 

  • Chihara-Siomi M, Yoshikawa K, Oshima-Hirayama N, Yamamoto K, Sogabe Y, Nakatani T, Nishioka T, Oda J (1992) Purification, molecular cloning, and expression of lipase from Pseudomonas aeruginosa. Arch Biochem Biophys 296:505–513

    Google Scholar 

  • Clarke L, Carbon J (1978) Functional Expression of Cloned Yeast DNA in Escherichia coli: Specific Complementation of Argininosuccinate Lyase (argH) Mutations. J Mol Biol 120:517–534

    Google Scholar 

  • Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60:321–347

    Google Scholar 

  • Frenken LGJ, Bos JW, Visser C, Muffler W, Tommassen J, Verrips CT (1993a) An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol 9:579–589

    Google Scholar 

  • Frenken LGJ, de Groot A, Tommassen J, Verrips CT (1993b) Role of the lipB, gene product in the folding of the secreted lipase of Pseudomonas glumae. Mol Microbiol 9:591–599

    Google Scholar 

  • Georgopoulos C (1992) The emergence of the chaperone machines. Trends Biochem Sci 17:295–299

    Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Google Scholar 

  • Gibson TJ (1984) Studies on the Epstein-Barr virus genome. PhD thesis, Cambridge University, UK

    Google Scholar 

  • Gormley E, Cantwell BA, Barker PJ, Gilmour RS, McConnell DJ (1988) Secretion and processing of the Bacillus subtilis endo-β-1,3-1,4-glucanase in E. coli. Mol Microbiol 2:813–819

    Google Scholar 

  • Hastrup S (1988) Analysis of the Bacillus subtilis xylose regulon. In: Zukowski, Ganesan, Hoch (eds), Genetics and biotechnology of Bacilli, vol 2. Academic Press, San Diego, pp 79–83

    Google Scholar 

  • Hastrup S, Jacobs MF (1990) Lethal phenotype conferred by xylose-induced overproduction of an apr-lacZ fusion protein. In: Zukowski, Ganesan and Hoch (eds), Genetics and biotechnology of Bacilli, vol 3. Academic Press, San Diego, pp 33–41

    Google Scholar 

  • Hobson AH, Buckley CM, Aamand JL, Jørgensen S, Diderichsen B, McConnell DJ (1993) Activation of a bacterial lipase by its chaperone. Proc Natl Acad Sci USA 90:5682–5686

    Google Scholar 

  • Ihara F, Okamoto I, Nihira T, Yamada Y (1992) Requirement in trans of the downstream limL gene for activation of lactonizing lipase from Pseudomonas sp. 109. J Ferment Bioeng 73:337–342

    Google Scholar 

  • Itzumi T, Nakamura K, Shimada Y, Sugihara A, Tominaga Y, Fukase T (1991) Cloning, nucleotide sequencing, and expression in Escherichia coli of a lipase and its activator genes from Pseudomonas sp. KWI-56. Agric Biol Chem 55:2349–2357

    Google Scholar 

  • Jørgensen PL, Hansen CK, Poulsen GB, Diderichsen B (1990) In vivo genetic engineering: homologous recombination as a tool for plasmid construction. Gene 96:37–41

    Google Scholar 

  • Jørgensen S, Skov KW, Diderichsen B (1991) Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J Bacteriol 173:559–567

    Google Scholar 

  • Kumamoto CA, Francetic O (1993) Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. J Bacteriol 175:2184–2188

    Google Scholar 

  • Kusukawa N, Yura T, Ucguchi C, Akiyama Y, Ito K (1989) Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 8:3517–3521

    Google Scholar 

  • Lecker S, Lill R, Ziegelhoffer T, Georgopoulos C, Bassford, P Jr, Kumamoto CA, Wickner W (1989) Three pure chaperone proteins of Escherichia coli - SecB, Trigger Factor and GroEL - form soluble complexes with precursor proteins in vitro. EMBO J 8:2703–2709

    Google Scholar 

  • Mandel A, Higa A (1970) Calcium-dependent bacteriophage DNA Infection. J Mol Biol 53:159–162

    Google Scholar 

  • Martin J, Mayhew M, Langer T, Hartl FU (1993) The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366:228–233

    Google Scholar 

  • Nakanishi Y, Watanabe H, Washizu K, Narahashi Y, Kurono Y (1991) Cloning, sequencing and regulation of the lipase gene from Pseudomonas sp. M-12-33. In: Alberghina, Schmid and Verger (eds) Lipases: structure, mechanism and genetic engineering. GBF Monographs, Braunschweig, Germany, 263–266

    Google Scholar 

  • Ortlepp SA, Ollington JF, McConnell DJ (1983) Molecular cloning in Bacillus subtilis of a Bacillus licheniformis gene encoding a thermostable a-amylase. Gene 23:267–276

    Google Scholar 

  • Oshima-Hirayama N, Yoshikawa K, Nishioka T, Oda J (1993) Lipase from Pseudomonas aeruginosa. Production in Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem 215:239–246

    Google Scholar 

  • Power SD, Adams RM, Wells JA (1986) Secretion and autoproteolytic maturation of subtilisin. Proc Natl Acad Sci USA 83:3096–3100

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schröder H, Langer T, Hartl F-U, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144

    Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Google Scholar 

  • Terhorst C, van Agthoven A, LeClair K, Snow P, Reinherz E, Schlossman S (1981) Biochemical studies of the human thymocyte cell-surface antigens T6, T9, and T10. Cell 23:771–780

    Google Scholar 

  • Tolleshaug H, Goldstein JL, Schneider WJ, Brown MS (1982) Post-translational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell 30:715–724

    Google Scholar 

  • Wohlfarth S, Hoesche C, Strunk C, Winkler UK (1992) Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. J Gen Microbiol 138:1325–1335

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mpl8 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Yasbin RE, Wilson GA, Young FE (1975) Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J Bacteriol 121:296–304

    Google Scholar 

  • Zhu X, Ohta Y, Jordan F, Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339:483–484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aamand, J.L., Hobson, A.H., Buckley, C.M. et al. Chaperone-mediated activation in vivo of a Pseudomonas cepacia lipase. Molec. Gen. Genet. 245, 556–564 (1994). https://doi.org/10.1007/BF00282218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282218

Key words

Navigation