Skip to main content
Log in

Factors affecting the immobilisation of plant cells on reticulated polyurethane foam particles

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Factors affecting the immobilisation and subsequent growth of plant cells in reticulated polyurethane foam particles have been studied using three plant species. Polyurethane foam from a number of commercial sources has been screened and a foam having a low phytotoxicity and good retention of plant cells selected for use. Particles (8×8×8 mm) of the material were seeded with plant cells from suspension culture and cells grown immobilised in particles until they occupied >80% of the available volume. For all species, foams containing small pores (60–80 ppi) were most effective in immobilising and retaining cells. For efficient use of the inoculum, high partial volumes of foam particles are required; with partial volumes above 40%, over 80% of the inoculum is taken up by the particles. While the initial immobilisation process presumably involves weak interactions between cells and the support material, factors such as inoculum size and the length of the loading period have been found to affect the immobilisation of cells and their subsequent growth within the matrix. A preliminary study of the requirements for the maintenance of viability of immobilised cultures at high cell densities has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlin J (1985) The use of Immobilised Plant Cells, An evaluation. Int. Assoc. Plant Tissue Culture Newsletter 46: 8–14

    Google Scholar 

  • Braun T, Navratil JD, Farag AB (1985) Polyurethane Foam Sorbents in Separation Science. CRC Press Inc, Boca Raton, Florida, USA, pp 219

    Google Scholar 

  • Brodelius P (1982) Immobilised Plant Cells. Adv Appl Microbiol 28: 1–26

    Google Scholar 

  • Brodelius P, Deus D, Mosbach K, Zenk MH (1980) The potential use of immobilised plant cells for the production and transformation of natural products. Enzyme Eng 5: 373–381

    Google Scholar 

  • Dainty AL, Goulding KH, Robinson PK, Simpkins I, Trevan MD (1985) Effect of Immobilisation on Plant Cell Physiology, Real or Imaginary. Trends Biochem 3: 59–60

    Google Scholar 

  • Felix HR, Mosbach K (1982) Enhanced stability of enzymes in permeabilised and immobilised cells. Biotechnol Lett 4: 181–186

    Google Scholar 

  • Gamborg O (1970) The effects of amino acids and ammonium on the growth of plant cells in suspension culture. Plant Physiol 45: 372–375

    Google Scholar 

  • Gamborg O, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158

    Google Scholar 

  • Lambe CA, Rosevear A (1983) Immobilised Plant and Animal Cells. In: Proc Biotech '83, On Line Conferences Ltd, London, pp 565–576

    Google Scholar 

  • Lindsey K, Yeoman MM (1983) Novel experimental systems for studying the production of secondary metabolites by plant tissue cultures. Proc Symp Soc expt Biol 18 Mantell SH, Smith H (eds), pp 39–67, CUP, Cambridge

    Google Scholar 

  • Lindsey K, Yeoman MM, Black GM, Mavituna F (1983) A novel method for the immobilisation and culture of plant cells. FEBS Lett 155: 143–149

    Google Scholar 

  • Loh VY, Richards SR, Richmond P (1986) Particle suspension in a circulating bed fermenter. Chem Engin J 32: B39-B41

    Google Scholar 

  • Mavituna F, Park JM (1985) Growth of Immobilised Plant Cells in Reticulate polyurethane foam matrices. Biotech Lett 7: 637–640

    Google Scholar 

  • Mavituna F, Park JH, Williams PD, Wilkinson AK (1986) Characteristics of Immobilised Plant Cell Reactors. In: Webb C, Mavituna F (eds) Process Possibilities for plant and animal cell cultures (in press)

  • Morris P, Fowler MH (1981) A new method for the production of fine plant cell suspension cultures. Plant Cell Tiss Org Cult 1: 15–24

    Google Scholar 

  • Parr AJ, Smith JI, Robins RJ, Rhodes MJC (1984) Apparent free space and cell volume estimation: A non-destructive method for assessing the growth and membrane integrity/viability of immobilised plant cells. Plant Cell Reports 3: 161–164

    Google Scholar 

  • Rhodes MJC (1985) Immobilised Plant Cells. Wiseman A (ed) Topics in Enzyme and Microbiol Biotechnol 10. Ellis Horwood, Chichester, pp 51–88

    Google Scholar 

  • Rhodes MJC, Kirsop BH (1982) Plant cell cultures as sources of valuable secondary products. Biologist 29: 134–140

    Google Scholar 

  • Rhodes MJC, Robins RJ, Payne J (1982) Progress in the immobilisation of Plant Cells — The Problems and Potential of Immobilised Systems. In: Proceedings Conf Plant Cell Culture, Oyez Scientific and Technical Services Ltd, London, pp 9–20

    Google Scholar 

  • Rhodes MJC, Robins RJ, Turner R, Smith JI (1985) Mucilaginous film production by plant cells immobilised in a polyurethane or nylon matrix. Can J Bot 63: 2357–2363

    Google Scholar 

  • Robins RJ, Furze JM, Rhodes MJC (1985) α-Acid Degradation by suspension culture cells of Humulus lupulus. Phytochemistry 24: 709–714

    Google Scholar 

  • Robins RJ, Hall DO, Shi D-J, Turner RJ, Rhodes MJC (1986a) Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces. FEMS Lett 34: 155–160

    Google Scholar 

  • Robins RJ, Parr AJ, Richards SR, Rhodes MJC (1986b) Studies of environmental features of immobilised plant cells. In: Morris P, Scragg AH, Stafford A, Fowler MW (eds) Secondary Metabolism in Plant Cell Cultures, Cambridge University Press, Cambridge, pp 162–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, M.J.C., Smith, J.I. & Robins, R.J. Factors affecting the immobilisation of plant cells on reticulated polyurethane foam particles. Appl Microbiol Biotechnol 26, 28–35 (1987). https://doi.org/10.1007/BF00282145

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282145

Keywords

Navigation