Skip to main content
Log in

Finite strain analysis by a stress-function method

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A finite element method for finite inelastic strain analysis of solids and structures is described. The method, which is based on a direct discretization of the equations of compatibility and angular momentum balance, represents a generalization of the mixed ‘stress function approach’ proposed for linear elasticity by de Veubeke (1975). It captures the main advantages of hybrid-stress, direct stiffness, and reduced integration finite element methods while avoiding their principal drawbacks. Examples are included which demonstrate important features of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri, S.N. (1980): On some new general and complementary energy theorems for the rate problems of finite strain classical elasto-plasticity. J.- Struct. Mech. 8, 61–92

    Google Scholar 

  • Belytschko, T.; Ong, J.S.-J.; Liu, W. K.; Kennedy, J. M. (1984): Hourglass control in linear and nonlinear problems. Computer Methods in Appl. Mech. and Eng. 43, 251–276

    Google Scholar 

  • Boresi, A.B.; Sidebottom, O. M.; Seely, S.M.; Smith, J.O. (1978): Advanced mechanics of materials, 3rd ed. New York: Wiley

    Google Scholar 

  • Chryssafi, S. (1979): Principes variationnels mixtes. Couplage de ces principes avec le principe des déplacements. La Recherche Aérospatiale, Année 1979, pp. 181–190

    Google Scholar 

  • Gallagher, R.H. ; Heinrich, J. C.; Sarigul, N. (1981) : Complementary energy revisited. Proc. Intern. Symp. Hybrid and Mixed Finite Element Methods, April 8–10, Atlanta, Georgia, USA

  • Herrmann, L.R. (1964): Elasticity equations for incompressible materials by a variational theorem. AIAA J. 3, 1896–1900

    Google Scholar 

  • Hill, R. (1958): A general theory of uniqueness and stability inelastic-plastic solids. J. Mech. and Physics of Solids 6, 236–249

    Google Scholar 

  • Jacquotte, O.-P.; Oden, J.T. (1984): Analysis of hourglass instabilities and control in underintegrated finite element methods. Computer Methods in Appl. Mech. and Eng. 44, 339–363

    Google Scholar 

  • Koiter W.T. (1977): Complementary energy, neutral equilibrium, and buckling. Proc. Kon. Ned. Akad. Wetensch. Ser. B. 183–200.

  • Malkus, D.S.; Hughes, T.J.R. (1978): Mixed finite element methods — reduced and selective integration techniques: A unification of concepts. Computer Methods in Appl. Mech. and Eng. 15, 63–81

    Google Scholar 

  • Pian, T.H.H. (1964): Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2, 1333–1336

    Google Scholar 

  • Pian, T.H.H.; Chen, D.-P. (1982): Alternative ways of formulation of hybrid stress elements. Intern. J. Numer. Meth. Eng. 18, 1679–1684

    Google Scholar 

  • Pian, T.H.H.; Chen, D.-P. (1983): On the suppression of zero energy deformation modes. Intern. J. Numer. Meth. in Eng. 19, 1741–1752

    Google Scholar 

  • Pian, T.H.H.; Sumihara, K. (1984): Rational approach for assumed stress hybrid elements. Intern. J. Numer. Meth. in Eng. 20, 1685–1695

    Google Scholar 

  • Punch, E.F.; Atluri, S.N. (1984a): Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybridstress elements. Computer Methods in Appl. Mech. and Eng. 47, 331–356

    Google Scholar 

  • Punch, E.F.; Atluri, S.N. (1984b): Applications of Isoparametric three-dimensional hybrid-stress finite elements with least-order stress fields. Computers and Structures 19, 409–430

    Google Scholar 

  • Rubinstein, R.; Punch, E.F.; Atluri, S.N. (1972): An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: Selection of stable, invariant stress fields. Rep. No: GIT-CACA-SNA-82-26, Georgia Institute of Technology

  • de Veubeke, B.M.F. (1972): A new variational principle for finite elastic deformations. Intern. J. Eng. Sci. 10, 745–763

    Google Scholar 

  • de Veubeke, B.M.F. (1975): Stress function approach. In: Robinson, J. (ed): Proc. World Congress on Finite Element Methods in Structural Mechanics, pp. J.1-J.51. Bournemouth: Robinson

    Google Scholar 

  • de Veubeke, B.M.F.; Millard, A. (1976): Discretization of stress fields in the finite element method. J. Franklin Institute 302, 389–412

    Google Scholar 

  • Washizu, K. (1975): Variational methods in elasticity and plasticity, 2nd ed. Tokyo: Pergamon Press

    Google Scholar 

  • Xue, W.-M.; Karlovitz, L.A.; Atluri, S.N. (1985): On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle. Intern. J. Solids and Structures 21, 97–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.N. Atluri, April 17, 1986

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, K.W., Cardinal, J.W. Finite strain analysis by a stress-function method. Computational Mechanics 2, 31–44 (1987). https://doi.org/10.1007/BF00282042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282042

Keywords

Navigation